

Ph.D. in Data Science

Data Science Colloquium

A Lunch Seminar Series Session#1 (Fall 2017) Data Science PhD

Monday, 27th November 2017, h.13:00

Dino Pedreschin UNIPI: Data Science for pattern discovery and machine learning transparency

Wednesday, Lth December 2017. h 13:00

Tommaso Cucinotta, SSSA: Real-time cloud and big-data processing infrastructures

Wednesday, 13th December 2017, h-13:00

Marco Contin IIT: From ego-networks to online social networks

All seminars will take place at

AULA GERACE, Dipartimento di Informatica, Università di Pisa

Polo Fibonacci (ex Marzotto), Edificio C,

Largo Bruno Pontecorvon 3 - PISA

Sobo Research Infrastructure

Data Science for Pattern Discovery and Machine Learning Transparency

Dino Pedreschi

1. Pattern Discovery

Delft 17 – 19 February 2016

mobile phone (CDR) data

GPS and GSM data

GPS

- 1 month in Tuscany
- ≈10 million car travels
 ≈ 100 million calls
- ≈ 200,000 vehicles

DCTO

GSM

Carrara

Lucca

Livorn

Prato Pistoia

Firenze

Siena

Grosseto

Arezzo

- 1 month in Tuscany
- 1 million users

UNIVERSITÀ DI PISA	iLab
nature	
Home About the journal Authors and referees Browse archive Search	
nature.com ⊫ journal home ⊫ current month ⊫ full text	
NATURE COMMUNICATIONS ARTICLE OPEN	

Returners and explorers dichotomy in human mobility

Luca Pappalardo, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti & Albert-László Barabási

Affiliations | Contributions | Corresponding authors

Nature Communications **6**, Article number: 8166 | doi:10.1038/ncomms9166 Received 15 December 2014 | Accepted 24 July 2015 | Published 08 September 2015

Human mobility is a complex system

Scale-free distribution of travel length

The heterogeneity of human mobility

Characteristic traveled distance

Recurrent mobility

What is the impact of *recurrent* mobility on total mobility of individuals?

mobile phone data

GPS tracks

- 67,000 users
- a big country
- 3 months

- 40,000 vehicles
- Tuscany
- 1 month

locations = census cells

total vs recurrent mobility

total radius

$$r_g = \sqrt{\frac{1}{N} \sum_{i \in L} n_i (\vec{r_i} - \vec{r_{cm}})^2},$$

the characteristic distance traveled by individuals

recurrent radius

$$r_g^{(k)} = \sqrt{\frac{1}{N_k} \sum_{i=1}^k n_i (\vec{r_i} - \vec{r_{cm}}^{(k)})^2}$$

the radius computed on the k most visited locations

C

Spatial clusters

1) Clusters law:

in individual mobility networks locations tend to aggregate in dense clusters

2) Returners/Explorers law:

as total rg increases the k most frequent locations move far apart for returners, they remain close for explorers.

EPR model of human mobility

A theoretical basis for agent-based simulation of population dynamics

Song, Koren, Wang, Barabasi, Nature Physics, Sept. 2010

COMPARING WITH THE EPR MODEL

Exploreres and Diffusion

- The global invasion diffusion threshold.
- The bars show how the 2,200 distribution of the *diffusion* 2,150 *invasion threshold* changes when different proportions of ^{*} 2,100 returners and explorers are 2,050 chosen.
- The red bar indicates the distribution where the fraction of explorers is 40%, the actual fraction of explorers in real data.

FINDINGS

- 1. Returners and explorers are sharply separate profiles
- 2. Explorers are crucial actors in the diffusion of diseases or other spreading phenomena
- 3. Social Homophily: returners preferably call other returners (the same applies to explorers)

Big data push towards convergence

- Network science / complex system science
 Global models of complex social phenomena
 - Behavioral **diversity** in society at large
- Data mining
 - Local patterns of complex social phenomena
 - Behavioral **similarity** in sub-populations
- Convergence needed to achieve realistic and accurate models for prediction and **simulation**

2. Machine Learning Transparency

Delft 17 – 19 February 2016

Big Data, Big Risks

- **Big data is algorithmic, therefore it cannot be biased!** And yet...
- All traditional evils of social discrimination, and many new ones, exhibit themselves in the big data ecosystem
- Because of its tremendous power, massive data analysis must be used responsibly
- Technology alone won't do: also need policy, user involvement and education efforts

 By 2018, 50% of business ethics violations will occur through improper use of big data analytics

• [source: Gartner, 2016]

The danger of black boxes

- The COMPAS score (Correctional Offender Management Profiling for Alternative Sanctions)
- A 137-questions questionnaire and a predictive model for "risk of crime recidivism." The model is a proprietary secret of Northpointe, Inc.
- The data journalists at propublica.org have shown that the model has a strong ethnic bias
 - blacks who did not reoffend are classified as high risk twice as much as whites who did not reoffend
 - whites who did reoffend were classified as low risk twice as much as blacks who did reoffend.

Al and Big Data

The danger of black boxes

- The three major US credit bureaus, Experian, TransUnion, and Equifax, providing credit scoring for millions of individuals, are often discordant.
- In a study of 500,000 records, 29% of consumers received credit scores that differ by at least fifty points between credit bureaus, a difference that may mean tens of thousands dollars over the life of a mortgage [CRS+16].
The danger of black boxes

- An accurate but untrustworthy classifier may result from an accidental bias in the training data.
- In a task of discriminating wolves from huskies in a dataset of images, the resulting deep learning model is shown to classify a wolf in a picture based solely on ...

The danger of black boxes

- An accurate but untrustworthy classifier may result from an accidental bias in the training data.
- In a task of discriminating wolves from huskies in a dataset of images, the resulting deep learning model is shown to classify a wolf in a picture based solely on ... the presence of snow in the background!

AI and Big Data

(a) Husky classified as wolf

Deep learning is creating computer systems we don't fully understand

What is covering the windows? blinds

Human Attention

HieCoAtt-O (Lu et al.) Correlation: -0.440

Judd et al. Correlation: 0.078

"THEY'RE PICKING [ANSWERS] BASED ON BIASES IN THE DATA SETS, RATHER THAN FROM FACTS ABOUT THE WORLD."

SAN-2 (Yang et al.)

Correlation: -0.495

AI and Big Data

• As we stated in our 2008 SIGKDD paper that started the field of discrimination-aware data mining [PRT08]:

 "learning from historical data recording human decision making may mean to discover traditional prejudices that are endemic in reality, and to assign to such practices the status of general rules, maybe unconsciously, as these rules can be deeply hidden within the **Discrimination-aware Data Mining**

> Dino Pedreschi Salvatore Ruggieri Franco Turini Dipartimento di Informatica, Università di Pisa L.go B. Pontecorvo 3, 56127 Pisa, Italy {pedre,ruggieri,turini}@di.unipi.it

> *KDD'08*, August 24–27, 2008, Las Vegas, Nevada, USA. Copyright 2008 ACM 978-1-60558-193-4/08/08 ...\$5.00.

Transparent algorithms to build trust

 Systems that recommend humans making a decision should explain why

nature International weekly journal of science								
Home News & Comment Research Careers & Jobs Current Issue Archive Audi	o & Video							
Archive Volume 537 Issue 7621 Editorial Article								
NATURE EDITORIAL	< 🛛							

The Secret Algorithms That Control Money

and Information

FRANK PASQUALE

THE

BLACK BOX

SOCIETY

More accountability for big-data algorithms

To avoid bias and improve transparency, algorithm designers must make data sources and profiles public.

21 September 2016

Right of explanation

- Applying AI within many domains requires **transparency** and **responsibility**:
 - health care
 - finance
 - surveillance
 - autonomous vehicles
 - Government
- EU General Data Protection Regulation (April 2016) establishes a right of explanation for all individuals to obtain "<u>meaningful explanations of the logic</u> <u>involved</u>" when automated (algorithmic) individual decision-making, including profiling, takes place.

THE BLACK BOX SOCIETY

FRANK PASQUALE

The Secret Algorithms That Control Money and Information

Data ethics technologies

Discrimination discovery from data

Discrimination-aware Data Mining

Dino Pedreschi Salvatore Ruggieri Franco Turini Dipartimento di Informatica, Università di Pisa L.go B. Pontecorvo 3, 56127 Pisa, Italy {pedre,ruggieri,turini}@di.unipi.it

KDD'08, August 24–27, 2008, Las Vegas, Nevada, USA. Copyright 2008 ACM 978-1-60558-193-4/08/08 ...\$5.00.

Discrimination discovery

- Given:
 - an historical database of **decision records**, each describing features of an applicant to a benefit
 - e.g., a credit request to a bank and the corresponding on credit approval/ denial
 - some designated categories of applicants, such as groups protected by anti-discrimination laws,
- find whether, and in which circumstances, there are evidences of discrimination of the designated categories that emerge from the data.

How? Fight with the same weapons

- Idea: use data mining to discover discrimination
 - the decision policies hidden in a database can be represented by **decision rules** and discovered by **frequent pattern mining**
 - Once found all such decision rules, highlight all potential niches of discrimination by filtering the rules using a measure that quantifies the discrimination risk.

German Credit dataset

	CHECKING_STATUS		DURATION		CREDIT_HISTO	RY	PURPOSE		CREDIT_AMOUNT				
ge_2		ge_200	_200		e	existing_paid		furniture_or_equipment		t le_38848d8			
no_checking		gt_31d2		existing_paid		radio_or_tv		le_38848d8					
	no_checking		gt_31d2		existing_paid		used_car		from_7519d6_le_11154d4				
	GERMAN	no_check	king	le_17d6	c	ritical_or_other_ex	isting_credit	radio_or_tv		le_38848d8			
	CHECKING_STATUS It_0 DURATION from_0 CREDIT_HISTORY It_0 PURPOSE It_0 CREDIT_AMOUNT It_0 SAVINGS_STATUS	lt_0	t_0		c	critical_or_other_existing_credit		t other		le_38848d8			
		from_0_lt_200											
		lt_0 lt_0		It_100			I B INSTALLMENT_COM		MMITMENT PERSONA		AL_STATUS		ER_PARTIES
						It_1 gt_208		з т		remaie_div_or_dep_or_mar		none	
		lt_0			_savings	from_1_It_4	gt_2d8			female_div_or_dep_		_mar none	
		from_0_l	t_200	lt_100		from_1_It_4	le_106			female_div_or_dep_or_mai		none	
			Ī	no_known	_savings	ge_7	gt_2d8		r	nale_single		none	
	INSTALLMENT COMMITM	IENT		It 100	PROPE	RTY MAGNITUDE	at 2d8	Ð	OTHER PAY	MENT PLANS		none	
	PERSONAL STATUS		le 1d6		life insuran	ce	from 30d2 le	41d4 han	k k		own	≚)ne	
	OTHER PARTIES		ot 2d8	car			e 30d2	none			own	one	
	RESIDENCE_SINCE from_1d6_le			2d2 life insura		ic_3002		hank		000	one		
				2d2 life_insura							rent	one	
AGE			at 249	2d9		ne_insurance		from 41d4_le_52d6 hone			for free	one	
	OTHER_PAYMENT_PLANS HOUSING	gt_208				property			IOI_IIEE	Ior_iree			
		- -	le_106	real_estat			from_30d2_le_41d4 bank		own	own			
			gt_208		no_known_	property	rom_30d2_le	2_4104 non	e 		own		0
	JOB	2	EXISTING_CR	EDITS 📳	JOB	15	NUM_DE	PENDENTS	OWN_T	ELEPHONE	FOREIGN_	WORKER	CREDIT
	NUM_DEPENDENTS OWN_TELEPHONE	le_	106	high	_qualit_or_s	self_emp_or_mgmt	le_1d2		yes	У	es		good
		le_	1d6	skille	ed .		le_1d2		none	У	es		good
		le_1d6		skilled		le_1d2		none		У	es		good
	CREDIT	fro	m_1d6_le_2d2	uns	killed_reside	nt	le_1d2		yes	У	es		good
		fro	from_1d6_le_2d2		_qualif_or_s	self_emp_or_mgmt	gt_1d2	_1d2 yes		У	es		good
from_1d6_le_2d le_1d6		m_1d6_le_2d2	unskilled_resider		lent le_1d2		none		У	yes		good	
		1d6	high_qualif_or_		r_self_emp_or_mgmt le_1d2		yes		yes			bad	
		fro	m_1d6_le_2d2	high	_qualif_or_s	self_emp_or_mgmt	le_1d2		none	У	es		good
		le_	1d6	skille	ed		le_1d2		none	У	es		bad

Discrimination discovery from data

- FOREIGN_WORKER=yes
 & PURPOSE=new_car & HOUSING=own
 → CREDIT=bad
 - elift = 5,19 supp = 56 conf = 0,37

elift = 5,19 means that foreign workers have more than 5 times more probability of being refused credit than the average population (even if they own their house).

Case Study: grant evaluation

49

- Outcome:
 - Funded
 - Not funded
 - Conditionally funded

Dataset attributes

Name	Description	Туре	Range/Nominal values	Mean/Mode					
Features on the principal and associate investigators									
gender	Gender of principal investigator (PI)	Nominal	{Male, Female}	Male					
region	Region of the institution of the PI	Nominal	{North, Center, South}	Center					
city	City of the institution of the PI		sta, Aquila,, Trento}	Rome					
inst_type	Type of the institution of the PI Features of	the F	iv, Consortium, Other}	Univ					
title	Title of the PI		searcher, Prof., Other, PhD}	PhD					
age	Age of the PI	Numeric	[26, 39]	32.8					
pub_num	Number of publications of the PI	Numeric	[1, 156]	16.4					
avg_aut	Average number of authors in publications of the PI	Numeric	[1, 87.1]	4.8					
f_partner_num	Number of female principal or associate investigators	Numeric	[0, 3]	0.86					
Project costs (absolute va	alues are in €)								
tot_exp	Total cost of the project	Numeric	[300000, 2000000]	971792					
fund_req	Requested grant	Numeric	[83720, 1260000]	506205					
fund_req_perc	Percentage of requested grant over total cost	Numeric	[26, 63]	51.6					
yr_num	Number of young researchers Project cc	sts	[1, 10]	2.1					
yr_cost	Cost of young researchers	515	[60000, 981261]	240557					
yr_perc	Percentage of young researcher costs over total cost	Numeric	[3, 63]	25.5					
grr_num	Number of International good repute researchers	Numeric	[1, 8]	1.5					
grr_cost	Cost of good reputation researchers	Numeric	[3500, 610000]	61863					
grr_perc	Percentage of good reputation researchers cost	Numeric	[0, 35]	6.1					
Research area									
program	Program the project was submitted to		P1, P2}	P2					
d1_lv1, d2_lv1, d3_lv1	1^{st} , 2^{nd} and 3^{rd} domain at the 1^{st} Research	Area	LS, SH, PE}	PE					
d1_lv2, d2_lv2, d3_lv2	1^{st} , 2^{nd} and 3^{rd} domain at the 2^{nd} received are the later metalent	1 (Olificia)	LS_1, LS_2,, PE_8}	PE_6					
d1_lv3, d2_lv3, d3_lv3	1^{st} , 2^{nd} and 3^{rd} domain at the 3^{rd} level of the ERC hierarchy	Nominal	{LS_1_1, LS_1_2,, PE_8_15}	PE_6_17					
Project evaluation									
s1	Scores S1 received at the peer-review	Numeric	[1, 8]	6.6					
s2	Scores S2 received at the peer-review	Numeric	[1, 7]	5.7					
s3	Scores S3 received at the peer-revie			11.8					
s4	Scores S4 received at the peer-revie Project EVa	aluatio		8.1					
audition	Whether the project passed the peer-review (1st evaluation phase)	пошшаг	{yes, no}	no					
funded	Whether the project was funded (2nd evaluation phase)	Nominal	{yes, no, conditionally}	no					
fund	The actual granted amount after budget cut	Numeric	[228000, 750100]	429990					

.

A potentially discriminatory rule

- R2: (d1_lv2 = PE4) and (tot_cost >= 1,358,000) and (age <= 35) => disc=yes [prec=1.0] [rec=0.031] [diff=0.194] [OR=4.50]
 - Antecedent
 - Project proposals in "Physical and Analytical Chemical Sciences"
 - Young females
 - Total cost of 1,358,000 Euros or above
 - Possible interpretation
 - "Peer-reviewers of panel PE4 trusted young females requiring high budgets less than males leading similar projects"

51

Case study: US Harmonized Tariff System

- US Harmonized Tariff System (HTS)
- <u>https://hts.usitc.gov/</u>
- **Detailed** tariff classification system for merchandise imported to US
- Chapter 61, 62, 64, 65: apparels
 - Different taxes for same garments separately polluced for male and male
 Women: 14%
 Men: 9%

BUSINESS DAY

In Apparel, All Tariffs Aren't Created Equal

By MICHAEL BARBARO APRIL 28, 2007

Totes-Isotoner Corp. v. U.S.

Rack Room Shoes Inc. and Forever 21 Inc. vs U.S.

Court of International Trade

U.S. Court of Appeals for the Federal Circuit (2014)

"[...] the courts may have concluded that Congress had no discriminatory intent when ruling the HTS, but there is little doubt that gender-based tariffs have **discriminatory impact**"

Fairer Trade

Removing Gender Bias in US Import Taxes

LORI L. TAYLOR AND JAWAD DAR Mosbacher Institute

There are many inequalities in US tariff policy. Products imported from certain countries enter duty free, while nearly identical products from other countries are heavily taxed. Tariffs on agricultural products are systematically higher than those on manufactured goods. Tariffs on some categories of manufactured goods—such as shoes or cotton shirts—depend on the gender of the intended consumer. Some of these tariff differences have a rational basis in the policy interests of the United States. However, differential taxation of apparel based on gender cannot be defended and should be abolished.

53

Sample rule from the HTS dataset

 $Shorts(?x) \land hasMaterial(?x, "fine animal hair")$ $\rightarrow isDiscriminatory(?x, yes)$

with a confidence conf = 66.67% can be directly compared with its ancestor rule at the grand-parent level (the concept *Shorts* is a sub-class of *Outerwear*):

 $Outerwear(?x) \land hasMaterial(?x, "fine animal hair") \\ \rightarrow isDiscriminatory(?x, yes)$

which has a lower confidence of conf = 57.78%.

Explaining human decision making

L. Pappalardo, P. Cintia, F. Giannotti, D. Pedreschi, A.-L. Barabasi. The human perception of performance (forthcoming)

Delft 17 – 19 February 2016

Soccer Player Ratings

Soccer Player Ratings

How humans evaluate sports performance?

TERRIBLE

Observe, predict, explain

- Observe
 - Use sensed data to measure and quantify different aspects of human performance, together with associated score
- Predict
 - Construct a predictive model using machine learning from data
- Explain
 - Explain the obtained model to discover rules adopted by the model to score a performance, thus reproducing the logic of the human evaluator

Machine performance

Sobo Research Infrastructure

Social Mining & Big Data Analytics H2020 - <u>www.sobigdata.eu</u> September 2015- August 2019

Exploratory: Big Data for City of Citizens

Ô

xploratory:

0

Big Data for Well Being and Economic Performance

Deprivation Index (in France) predicted with Mobile Phone traces

Exploratory: Big Data for Societal Debates

O

Legal and Ethical framework

Define and implement the legal and ethical framework of the SoBigData RI, in accordance with the European and national legislations

Monitor of research

Monitor the compliance of experiments and research protocols with the framework

Privacy-by-design

The development of big data analytics and social mining tools with Value-Sensitive Design and privacy-by-design methodologies

4

This is the work of many people for a long time

- Fosca Giannotti, Mirco Nanni, Salvo Rinzivillo, Roberto Trasarti, Anna Monreale, Salvatore Ruggieri, Franco Turini
- all the fantastic folks at KDD LAB Pisa
 <u>http://kdd.isti.cnr.it</u>

- Many international collaborators
- Thanks a lot!

Knowledge Discovery & Data Mining Lab http://kdd.isti.cnr.it

Knowledge Discovery & Data Mining Lab http://kdd.isti.cnr.it
Key publications

- F Giannotti, M Nanni, F Pinelli, D Pedreschi. Trajectory pattern mining. ACM SIGKDD 2007
- F Giannotti, D Pedreschi. Mobility, data mining and privacy: Geographic knowledge discovery. Springer, 2008
- A Monreale, F Pinelli, R Trasarti, F Giannotti. WhereNext: a location predictor on trajectory pattern mining. ACM SIGKDD 2009
- S Rinzivillo, D Pedreschi, M Nanni, F Giannotti, N Andrienko, G Andrienko. Visually driven analysis of movement data by progressive clustering. Information Visualization 7 (3-4), 225-239. 2008
- D Wang, D Pedreschi, C Song, F Giannotti, AL Barabasi. Human mobility, social ties, and link prediction. ACM SIGKDD 2011
- F Giannotti, M Nanni, D Pedreschi, F Pinelli, C Renso, S Rinzivillo, R Trasarti. Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal 20(5) 2011
- R Trasarti, F Pinelli, M Nanni, F Giannotti. Mining mobility user profiles for car pooling. ACM SIGKDD 2011
- M Coscia, G Rossetti, F Giannotti, D Pedreschi. Demon: a local-first discovery method for overlapping communities. ACM SIGKDD 2012
- D Pennacchioli, M Coscia, S Rinzivillo, F Giannotti, D Pedreschi. The retail market as a complex system. EPJ Data Science 3 (1), 1-27 (2014)
- A Monreale, S Rinzivillo, F Pratesi, F Giannotti, D Pedreschi. Privacy-by-design in big data analytics and social mining. EPJ Data Science 3 (1), 1-26 (2014)
- Luca Pappalardo, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti & Albert-László Barabási. Returners and explorers dichotomy in human mobility. Nature Communications 6, Article number: 8166 (2015) doi:10.1038/ncomms9166 (2015)

Key publications

- M Coscia, G Rossetti, F Giannotti, D Pedreschi. Demon: a local-first discovery method for overlapping communities. ACM SIGKDD 2012
- S Rinzivillo, S Mainardi, F Pezzoni, M Coscia, D Pedreschi, F Giannotti. Discovering the geographical borders of human mobility. KI-Künstliche Intelligenz 26 (3) 2012
- D Pennacchioli, M Coscia, S Rinzivillo, D Pedreschi, F Giannotti. Explaining the Product Range Effect in Purchase Data. IEEE BIGDATA 2013
- B Furletti, L Gabrielli, C Renso, S Rinzivillo. Analysis of GSM Calls Data for Understanding User Mobility Behavior. IEEE BIGDATA 2013
- L Milli, A Monreale, G Rossetti, D Pedreschi, F Giannotti, F Sebastiani. Quantification trees. IEEE ICDM 2013
- Giusti, Marchetti, Pratesi, Salvati, Pedreschi, Giannotti, Rinzivillo, Pappalardo, Gabrielli. Small area model based estimators using Big Data Sources. Journal of Official Statistics, 31(2) 2015.
- Furletti, Gabrielli, Garofalo, Giannotti, Milli, Nanni, Pedreschi, Vivio. Use of mobile phone data to estimate mobility flows. Measuring urban population and intercity mobility using big data in an integrated approach. Italian Symposium on Statistics, 2014.
- Luca Pappalardo, Maarten Vanhoof, Zbigniew Smoreda, Dino Pedreschi, Fosca Giannotti. Human Mobility and Economic Development. IEEE BIG DATA (2015).

Vision papers

- F Giannotti, D Pedreschi, A Pentland, P Lukowicz, D Kossmann, J Crowley, D Helbing. A planetary nervous system for social mining and collective awareness. The European Physical Journal Special Topics 214 (1), 49-75, 2012
- J van den Hoven, D Helbing, D Pedreschi, J Domingo-Ferrer, F Giannotti . FuturICT—The road towards ethical ICT. The European Physical Journal Special Topics 214 (1), 153-181, 2012
- M Batty, KW Axhausen, F Giannotti, A Pozdnoukhov, A Bazzani, M Wachowicz. Smart cities of the future. The European Physical Journal Special Topics 214 (1), 481-518, 2012