

Business Process Analytics: From Insights to Predictions

Marlon Dumas

University of Tartu Institute of Computer Science

joint work with University of Melbourne

Data Science Summer School, Pisa, 5 September 2019

What is a Business Process?

Business processes

4

A business process is...

a chain of events, activities and decisions ...involving a number of actors and objects,triggered by a need and leading to an outcome that is of value to a customer.

Examples:

6

- Order-to-Cash
- Procure-to-Pay (aka Purchase-to-Pay)
- Application-to-Approval
- Fault-to-Resolution

The Business Process Management (BPM) lifecycle

Business Process Monitoring

Performance Dashboards

Process Mining

Structure of a Business Process Event Log

Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
Concrete formats:				Mortgage	30 000	-
 Comma-Separated Values (CSV) 				Mortgage	30 000	-
• IEEE XES (XML format)				Mortgage	30 000	-

Tactical Process Mining

10

input process model

Automated Process Discovery

Discovering BPMN Process Models

Alpha miner (α-miner)

• *Simple,* limited, not robust

Heuristics miner (and derivatives, including Fodina)

• Robust to noise, fast, but can produce incorrect models

Inductive miner

• Ensures that models are <u>block-structured</u> & correct

Split miner

• Produces deadlock-free but not necessarily structured models

Accuracy of Automated Process Discovery

Conformance Checking in Apromore

García-Bañuelos et al. "Complete and Interpretable Conformance Checking of Business Processes" *IEEE Transactions on Software Engineering* 44(3): 262-290, 2018

Automated Process Discovery Benchmark

- 24 real-life event logs (most from IEEE Task force on Process Mining)
- Quality criteria:
 - Accuracy measures: Fitness, precision, F-Score, generalization
 - Model complexity measures: size, structural complexity, structuredness
 - Model soundness
 - Execution time
- Main conclusions:
 - Inductive Miner, Evolutionary Tree Miner, Split Miner have highest F-scores
 - Closely followed by Fodina
 - Inductive Miner achieves highest fitness generally, but lower precision (than Split Miner)
 - Evolutionary tree miner produces simpler models, but high execution times

Augusto et al. "Automated Discovery of Process Models from Event Logs: Review and Benchmark". *IEEE Transactions on Knowledge and Data Engineering* (2018), DOI: 10.1109/TKDE.2018.2841877

16

Automated Process Discovery Methods

A. Augusto et al. Split Miner: Discovering Accurate and Simple Business Process Models from Event Logs. In ICDM'2017.

Sølit Miner

Split Miner Algorithm

 Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Artem Polyvyanyy: Split miner: automated discovery of accurate and simple business process models from event logs.
 Knowl, Inf. Syst. 59(2): 251-284 (2019)

Sølit Miner

Event LogDirectly-Follows Graph and Loops DiscoveryConcurrency DiscoveryFilteringSplits DiscoveryJoins DiscoveryPro- Main

Trace	#obs
a » b » c » g » e » h	10
a » b » c » f » g » h	10
a » b » d » g » e » h	10
a » b » d » e » g » h	10
a » b » e » c » g » h	10
a » b » e » d » g » h	10
a » c » b » e » g » h	10
a » c » b » f » g » h	10
a » d » b » e » g » h	10
a » d » b » f » g » h	10

Sølit Miner

Event LogDirectly-Follows Graph and Loops DiscoveryConcurrency DiscoveryFilteringSplits DiscoveryJoins DiscoveryPro- Main

Trace	#obs
a » b » c » g » e » h	10
a » b » c » f » g » h	10
a » b » d » g » e » h	10
a » b » d » e » g » h	10
a » b » e » c » g » h	10
a » b » e » d » g » h	10
a » c » b » e » g » h	10
a » c » b » f » g » h	10
a » d » b » e » g » h	10
a » d » b » f » g » h	10

plit Miner

8¢lit Miner

8ølit Miner

From Maps to BPMN

2βlit Miner

(b || c) (b || d) (d || e) (e || g)

plit Miner

Done!

Demo Time!

http://apromore.org

Process Mining

Conformance Checking

Given a process model and an event log, find, describe, and/or measure the *differences* between them

Conformance Checking with Trace Alignment

Conformance Checking in Apromore (Behavior Alignment)

Unfitting behaviour:

• Task C is *optional* (i.e. may be skipped) in the log

Additional behavior:

• The cycle including IGDF is not observed in the log

García-Bañuelos et al. "Complete and Interpretable Conformance Checking of Business Processes" *IEEE Transactions on Software Engineering* 44(3): 262-290, 2018

Behavior Alignment

Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Abel Armas-Cervantes: Scalable Conformance Checking of Business Processes. OTM Conferences (1) 2017: 607-627

From event log to DAFSA

Prefixes	Suffixes	
$\langle B, D \rangle, \langle C, B, D \rangle$	$\langle D, F \rangle, \langle D, E \rangle$	

Log						
Trace	N					
⟨ <i>B</i> , <i>D</i> , <i>E</i> ⟩	5					
$\langle B, D, F \rangle$	10					
$\langle C, B, D, E \rangle$	15					
$\langle C, B, D, F \rangle$	5					

DAFSA

From process model to reachability graph

PSP construction with the A***- Algorithm**

Interactive Model Repair

36

A. Armas Cervantes et al. "Interactive and Incremental Business Process Model Repair", Proceedings of CoopIS'2017

Demo Time!
Process Mining

Variants Analysis

Given two logs, find the *differences* and *root causes* for variation between the two logs

Variants Analysis

• Model comparison

• Log delta analysis

N. van Beest et al. "Log Delta Analysis: Interpretable Differencing of Business Process Event Logs" Proc. of BPM'2015

Process Mining

Performance Mining

Dotted charts

Timeline diagrams

Performance-enhanced dependency graphs

Performance-Enhanced Handoff Map

Operational Process Analytics

Business Process Analytics

Statistics-Based Techniques Performance Dashboards

Predictive Process Monitoring

Aggregate predictive dashboards

Detailed predictive dashboard

1	88		0	49	99	-			-				
All events	Outcomes	Case duration	Remaining time	Case length							•		
Case	Evi	ints elapsed	Start time	Latest event time	Target supply date	Supplier Location	Delivery Type	Bector	Line Total Cost	Delay Rank	Late Supply	Next Activity	Predicted
191315	4		2017-Aup-16 20:24	2017-Aug-22 19:54	2017-Nov-16	International	Sea	Manufacturing	\$2,048.00	97% Justin time	4%	91% Supply Date Rec	2017-Nov
01472	2		2017-Aup 20 23:53	2017-Aug-22 18:23	2017-Oct-28	International	Sea	Manufacturing	87,183.00	80% Just in time	54%	72% Order Confirmed	2017-Out-
62222	23		2017-Feb-10 01:27	2017-Aug-22 00:51	2017-Feb-12	International	Courier	H Tech	\$73,968,00	74% Severe	100%	79% Goods Supplied	2017-Aug
190823	4		2017-Aup 09 23:35	2017-Aug-21 19:50	2017-5ep-10	International	Sea	Manufacturing	85,297.00	81% Just in time	20%	49% Delivered to Ship	2017-Sep
90022	5		2017-Aup-09-23:36	2017-Aug-21 19:50	2017-Gep-20	International	Sea	Manufacturing	\$3,559.00	92% Just in time	12%	47% Delivered to Ship	2017-Sep
90622	4		2017-Aup 09 23:35	2017-Aug-21 19:50	2017-Sep-20	International	Sea	Manufacturing	\$3,559.00	MIS Just in time	14%	50% Delivered to Shi	2017-Sep
90873	2		2017-Aug-21 00:05	2017-Aug-21 02:06	2017-Nov-09	International	Sea	H Tech	\$983.09	00% Just in time	10%	75% Supply Date Re:	2017-Dec
90673	1		2017-Aug-21 00:05	2017-Aug-21 02:06	2017-Nov-69	International	Sea	H Tech	\$983.09	89% Just in time	18%	77% Order Confirmed	2017-Dec
90872	2		2017-Aup-21 00:05	2017-Aug-21 02:06	2017-Nov-03	International	Sea	H Tech	\$1,096.00	80% Just in time	27%	57% Order Confirmed	2017-Nov
90672	1		2017-Aug-21 00:05	2017-Aug-21 00:06	2017-Nov-63	International	Sea	H Tech	\$1,096.00	80% Just in time	32%	78% Order Confirmed	2017-Nov
190871	2		2017-Aup-21 00:05	2017-Aug-21 02:06	2017-Nov-01	International	Sea	H Tech	\$1,681.00	83% Just in time	22%	74% Supply Date Res	2017-Nov
190671	1		2017-Aug-21 00:05	2017-Aug-21 00:06	2017-Nov-01	International	Sea	H Tech	\$1,681.00	84% Just in time	27%	77% Order Confirmed	2017-Nov
90870	2		2017-Aug-21 00:08	2017-Aug-21 00:06	2017-0:1-29	International	Sea	H Tech	82,182.00	82% Just in time	30%	75% Supply Date Re:	2017-Nov
150870	1		2017-Aug-21 00:06	2017-Aug-21 00:06	2017-0ct-29	International	Sea .	H Tech	82,182.00	63% Just in time	39%	78% Order Confirmed	2017-Nav
50860	2		2017-Aup-21 00.06	2017-Aup-21 00:06	2017-Nov-04	International	See	Hi Tech	83.957.00	86% Just in time	20%	73% Supply Date Re:	2017-Dec

Predictive Process Monitoring

- What is the next activity for this case?
- When is this next activity going to take place?
- How long is this case still going to take until it is finished?
- What is the outcome of this case?
- Is the compensation going to be paid? Or rejected?

Predictive Process Monitoring: General Approach

Predictive process monitoring workflow

Prefix extraction

Bucketing

Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
C003	02-11-2016	Check completeness	Maria	Mortgage	30 000	-
C003	04-11-2016	Ask for additional data	Maria	Mortgage	30 000	-
C003	10-11-2016	Check credit history	Maria	Mortgage	30 000	-

Index-based encoding

id	loan goal	$activity_1$	 $activity_m$	amount_1	 $\mathrm{amount_m}$	label
1	mortgage	check completeness	 make offer	0	 80 000	1
2	car	check completeness	 calculate risk score	0	 0	0

Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
C003	02-11-2016	Check completeness	Maria	Mortgage	30 000	-
C003	04-11-2016	Ask for additional data	Maria	Mortgage	30 000	-
C003	10-11-2016	Check credit history	Maria	Mortgage	30 000	-

Index-based encoding + prefix-length bucketing

Index-based encoding + prefix-length bucketing

Case ID	Time- stamp	Activity	Resource	Amount	
C1	T1	А	R1	100	
C1	T2	В	R1	100	
C1	Т3	D	R2	100	
C1	T4	E	R3	100	
C1	T5	E	R3	100	
C2	T1	А	R1	15	
C2	T2	В	R1	50	
C2	Т3	D	R4	50	
C2	T4	F	R4	50	
C3	T1	А	R5	30	
C3	T2	С	R5	30	
С3	Т3	В	R5	30	

	Activity1	Resource1	Amount1	Activity2	Resource2	Amount2
×	А	R1	100	В	R1	100
	A	R1	15	В	R1	50
•	А	R5	30	С	R5	30

Classifier 2

▷ Index-based encoding

id	loan goal	$activity_1$	 $activity_m$	amount_{-1}	 $amount_m$	label
1	mortgage	check completeness	 make offer	0	 80 000	1
2	car	check completeness	 calculate risk score	0	 0	0

Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
C003	02-11-2016	Check completeness	Maria	Mortgage	30 000	-
C003	04-11-2016	Ask for additional data	Maria	Mortgage	30 000	-
C003	10-11-2016	Check credit history	Maria	Mortgage	30 000	-

▷ Aggregation encoding

id	loan goal	$\operatorname{count}(\operatorname{check}\operatorname{compl-ness})$	 $\operatorname{count}(\operatorname{make offer})$	$\min(\mathrm{amt})$	 $\max(\operatorname{amt})$	label
1	mortgage	1	 1	0	 80 000	1
2	car	1	 0	0	 0	0

Aggregation encoding

Case ID	Time- stamp	Activity	Resource	Amount	
C1	T1	А	R1	100	
C1	T2	В	R1	100	
C1	Т3	D	R2	100	
C1	T4	E	R3	100	
C1	T5	E	R3	100	/
C2	T1	А	R1	15	
C2	T2	В	R1	50	
C2	Т3	D	R4	50	
C2	T4	F	R4	50	
С3	T1	А	R5	30	/
C3	T2	С	R5	30	
С3	Т3	В	R5	30	

	Time- stamp	Freq A	Freq B	Freq C	Freq R1	Freq R5	Max Amount	Mean Amount
-	• T1	1	0	0	1	0	100	100
	T1	1	0	0	1	0	15	15
	T1	1	0	0	0	1	30	30

Aggregation encoding

Case ID	Time- stamp	Activity	Resource	Amount		Time- stamp	Freq A	Freq B	Freq C	Freq R1	Freq R5	Max Amount	Mean Amount
C1	T1	А	R1	100		T1	1	0	0	1	0	100	100
C1	T2	В	R1	100		T1	1	0	0	1	0	15	15
C1	Т3	D	R2	100		T1	1	0	0	0	1	30	30
C1	T4	E	R3	100		T2	1	1	0	2	0	100	100
C1	T5	E	R3	100		T2	1	1	0	2	0	50	32.5
C2	T1	А	R1	15		T2	1	0	1	0	2	30	30
C2	Т2	В	R1	50	1								
C2	Т3	D	R4	50									
C2	T4	F	R4	50									
C3	T1	А	R5	30									
C3	T2	С	R5	30									
C3	Т3	В	R5	30							Clas	sifier	

▷ Index-based encoding

id	loan goal	$activity_1$	 $activity_m$	amount_{-1}	 $\mathrm{amount_m}$	label
1	mortgage	check completeness	 make offer	0	 80 000	1
2	car	check completeness	 calculate risk score	0	 0	0

Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
C003	02-11-2016	Check completeness	Maria	Mortgage	30 000	-
C003	04-11-2016	Ask for additional data	Maria	Mortgage	30 000	-
C003	10-11-2016	Check credit history	Maria	Mortgage	30 000	-

▷ Aggregation encoding

id	loan goal	$\operatorname{count}(\operatorname{check}\operatorname{compl-ness})$	 $\operatorname{count}(\operatorname{make offer})$	$\min(\operatorname{amt})$	 $\max(\operatorname{amt})$	label
1	mortgage	1	 1	0	 80 000	1
2	car	1	 0	0	 0	0

LSTM

id	event	loan goal	event	amount	label
	1	mortgage	check completeness	0	
1					1
	m	mortgage	make offer	80 000	
	1	car	check completeness	0	
2					0
	m	car	calculate risk score	0	

Model training

Predictive process monitoring workflow

Taxonomy of existing approaches

What is the relative performance of these methods?

Irene Teinemaa, Marlon Dumas, <u>Marcello La Rosa</u>, <u>Fabrizio Maria Maggi</u>:

Outcome-Oriented Predictive Process Monitoring: Review and Benchmark. TKDD 13(2): 17:1-17:57 (2019)

Evaluation datasets

	Dataset	Domain	# traces	Median # events in trace	Class ratio
1	bpic2011_1	Hospital treatment	1140	25	0.4
2	bpic2011_2	Hospital treatment	1140	54.5	0.78
3	bpic2011_3	Hospital treatment	1121	21	0.23
4	bpic2011_4	Hospital treatment	1140	44	0.28
5	bpic2012_1	Loan application	4685	35	0.48
6	bpic2012_2	Loan application	4685	35	0.17
7	bpic2012_3	Loan application	4685	35	0.35
8	bpic2015_1	Building permit	696	42	0.23
9	bpic2015_2	Building permit	753	55	0.19
10	bpic2015_3	Building permit	1328	42	0.2
11	bpic2015_4	Building permit	577	42	0.16
12	bpic2015_5	Building permit	1051	50	0.31
13	bpic2017_1	Loan application	31413	35	0.41
14	bpic2017_2	Loan application	31413	35	0.12
15	bpic2017_3	Loan application	31413	35	0.47
16	Production	Manufacturing	220	9	0.53
17	sepsis_1	Hospital treatment	754	14	0.14
18	sepsis_2	Hospital treatment	782	13	0.14
19	sepsis_3	Hospital treatment	782	13	0.14
20	Traffic	Traffic fines	129615	4	0.46
21	hospital_1	Hospital finances	77525	6	0.1
22	hospital_2	Hospital finances	77525	6	0.05
23	insurance_1	Insurance	1065	12	0.16
					0.20

Results: Learning Algorithms (Nemenyi test)

Results: Bucketing and Sequence Encoding

Predictive process monitoring in Apromore

- Predict **process outcome** (e.g. "Is this loan offer going to be rejected?")
- Predict **process performance** (e.g. "Will this claim take longer than 5 days to be handled?")
- Predict future events (e.g. "What activity is likely to be executed next? And after that?")

Recap: Process Mining in a Nutshell

Frontier topics in process mining

• Explainable & Actionable Predictive Process Monitoring

- Extracting interpretable predictions
 - Helping users understand the root causes of predicted outcomes
- Turning predictions into actions
 - Prescriptive process monitoring

Prescriptive process monitoring

Cost model

	X Undesired outcome	Desired outcome
Alarm raised	cost of intervention + (1 - mitigation effectiveness) * cost of undesired outcome	cost of intervention + cost of compensation
Alarm not raised	cost of undesired outcome	no costs
Mi effect	tigation tiveness Cost of vention	
	• nine	Undesired outcome

Alarming mechanism

- Raise an alarm if P(undesired outcome) > τ
- Optimal τ is found via empirical thresholding

Results

Alarming policy * always alarm * never alarm * optimized + tau=0.5

Frontier topics in process mining

• Explainable & Actionable Predictive Process Monitoring

- Extracting interpretable predictions
 - Helping users understand the root causes of predicted outcomes
- Turning predictions into actions
 - Prescriptive process monitoring
- Robotic Process Mining
 - Discovering executable routine specifications (e.g. RPA scripts) from UI logs

Robotic Process Mining

UI log

	Action	Action Parameters				
	Туре	Param-1	Param-2	Param-3	Param-4	
1	Click button	Target:Web	Label: STUDENTS			
2	Fill the text field	Target:Web	Label: ID Student	Value: 010234		
3	Press key	Target:Web	Label: ENTER			
4	Click button in row	Target:Web	Label: Update	ID Row: 010234		
5	Fill the text field	Target:Web	Label: Address	Value: 19 Parkville St,		
				Burnley VIC 3121		
6	Fill the text field	Target:Web	Label: Country	Value: Australia		
7	Open file	Target:Excel	Name: 010234	Path: C:/Students/Australia/	Extension: .xls	
8	Copy (Ctrl+C)	Target:Web	From: Address	Value: 19 Parkville St		
9	Paste (Ctrl+V)	Target:Excel	Row: 5	Column: A	Value: 19 Parkville St	
10	Save file (Ctrl+S)	Target:Excel				
11	Click button	Target:Web	Label: Confirm Backup			

UI log

Robotic Process Mining

Detect automatable routines:

- 1. Detect automatable actions
- 2. Return only those flat polygons made of automatable actions

An action is *automatable* if all its arguments are *constant* or *functions* of arguments of previously-executed actions

Foofah – Discovering Data Transformations by Example

	Action	Action Parameters			
	Туре	Param-1	Param-2	Param-3	Param-4
1	Click button	Target:Web	Label: STUDENTS		
2	Fill the text field	Target:Web	Label: ID Student	Value: 010234	
3	Press key	Target:Web	Label: ENTER		
4	Click button in row	Target:Web	Label: Update	ID Row: 010234	
5	Fill the text field	Target:Web	Label: Address	Value: 19 Parkville St	
				Burnley VIC 3121	
6	Fill the text field	Target:Web	Label: Country	Value: Australia	
7	Open file	Target:Excel	Name: 010234	Path: C:/Students/Australia/	Extension: .xls
8	Copy (Ctrl+	Target:Web	From: Address	Value: 19 Parkville St	
9	Paste (Ctrl+	Target:Excel	Row: 5	Column: A	Value: 19 Parkville St
10	Save file (Ctrl	Target:Excel			
11	Click button	Target:Web	Label: Confirm Backup		

Discover activation conditions:

For each automatable routine, discover its *activation condition*, containing:

- 1. Triggering action, which must be successfully executed before the routine
- 2. Boolean condition, which must be valid at the completion of the triggering action

	Action	Action Parameters				
	Туре	Param-1	Param-2	Param-3	Param-4	
1	Click button	Target:Web	Label: STUDENTS			
2	Fill the text field	Target:Web	Label: ID Student	Value: 010234		
3	Press key	Target:Web	Label: ENTER			
4	Click button in row	Target:Web	Label: Update	ID Row: 010234		
5	Fill the text field	Target:Web	Label: Address	Value: 19 Parkville St,		
				Burnley VIC 3121		
6	Fill the text field	Target:Web	Label: Country	Value: Australia		
7	Open file	Target:Excel	Name: 010234	Path: C:/Students/Australia/	Extension: .xls	
8	Copy (Ctrl+C)	Target:Web	From: Address	Value: 19 Parkville St		
9	Paste (Ctrl+V)	Target:Excel	Row: 5	Column: A	Value: 19 Parkville St	
10	Save file (Ctrl+S)	Target:Excel				
11	Click button	Target:Web	Label: Confirm Backup			

Frontier topics in process mining

• Explainable & Actionable Predictive Process Monitoring

- Extracting interpretable predictions
 - Helping users understand the root causes of predicted outcomes
- Turning predictions into actions
 - Prescriptive process monitoring
- Robotic Process Mining
 - Discovering executable routine specifications (e.g. RPA scripts) from UI logs
- Automated Process Discovery
 - Given an event log L, discover opportunities to improve the process w.r.t. one or more performance measures

The Process Improvement Explorer (PIX)

WE ARE HIRING!

2 x PhD positions & 2 x Postdoc Postions

https://sep.cs.ut.ee/Main/PIX

