
Algorithms, Data Science, and Online Markets

Stefano Leonardi

Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG)
Sapienza University of Rome

September 2-6, 2019

Data Science Summer School - Pisa

Algorithms, Data Science, and Markets September 5, 2019 1 / 83



Stefano Leonardi

Leader of the Research Group
on Algorithms and Data Science
at DIAG - Sapienza

ERC Advanced Grant
”Algorithms and Mechanism
Design Research in Online
MArkets” (AMDROMA)

Chair of the PhD program in
Data Science at Sapienza

Past Chair of the Master’s
Degree in Data Science at
Sapienza

Fellow of the European
Association for Theoretical
Computer Science

Research Interests:

Algorithmic Theory

Algorithmic Data Analysis

Economics and Computation

Algorithms, Data Science, and Markets September 5, 2019 2 / 83



Outline

1 Part I: Algorithms, Data Science and Markets

2 Part II: Internet, Equilibria and Games

3 Part III: Games and solution concepts

4 Part IV: The complexity of finding equilibria

5 Part V: The price of Anarchy

6 Part VI: Equilibria in markets

7 Conclusions

Algorithms, Data Science, and Markets September 5, 2019 3 / 83



Algorithms, Data Science, and Markets

Digital markets form an important share of the global economy.

Many classical markets moved to Internet: real-estate, stocks,
e-commerce, entarteinment

New markets with previously unknown features have emerged:
web-based advertisement, viral marketing, digital goods, online labour
markets, sharing economy
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An Economy of Algorithms

In 2000, we had 600 humans making markets in U.S. stocks. Today,
we have two people and a lot of software. One in three Goldman
Sachs employees are engineers
R. Martin Chavez, Chief Financial Officer at Goldman Sachs

[Data,Dollars,and Algorithms: The Computational Economy, Harvard,
2017]
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An Economy of Algorithms

Algorithms take many economic decisions in our life:

Rank web pages in search engines

Trade stocks

Run Ebay auctions

Price Uber trips

Kidney exchange

Internet dating

Assign interns to hospitals and pupils to schools

Sell Ads on Webpages

Price electric power in grids
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Success story 1: Internet Advertising

Provide the major source of
revenue of the Internet Industry,
more than 90% for Google

Electronic auctions are executed
billions of times a day within the
time frame of few hundred
milliseconds.

Many new auction design and
big data algorithmic problems
are motivated by online markets
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Success story 1: Internet Advertising
Selling display ads on the spot market.
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Success story 2: Digital Markets

Need a theory for markets run
by algorithms

Do prices that induce efficient
equilibria between buyers and
sellers exist?

Provide incentives to service
providers (convince Uber riders
to get up at night!) and to
consumers to stay in the market.
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Success story 2: Digital Markets

Algorithmic problems in online markets are not standard since they
work on inputs that are private information of economic agents

Algorithmic mechanism design deals with the design of incentives that
make agents to report honestly their private information to the
algorithm.

How hard is to find equilibria in markets operated by algorithms? If
your laptop cannot find the equilibrium, your system cannot do it
either!
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Success story 3: Matching Markets
Goal. Given a set of preferences among hospitals and med-school
students, design a self-reinforcing admissions process.
Unstable pair. Hospital h and student s form an unstable pair if both:

h prefers s to one of its admitted students.
s prefers h to assigned hospital.

Stable assignment. Assignment with no unstable pairs.
Natural and desirable condition.
Individual self-interest prevents any hospital-student side deal.

Algorithms, Data Science, and Markets September 5, 2019 11 / 83



Success story 3: Matching Markets

Gale-Shapley algorithm computes a stable matching

2012 Nobel Prize in Economics:

Lloyd Shapley. Stable matching theory and GaleShapley algorithm.
Alvin Roth: Applied GaleShapley to matching med-school students
with hospitals, students with schools, and organ donors with patients.

Algorithms are nowadays running matching markets also on digital
platforms, large-scale organ transplants projects.
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Success story 4: Online Labour Marketplaces

Outsource complex tasks to
workforce recruited on the cloud

Algorithmic methods for job
scheduling, task allocation,
team formation, and distributed
coordination.

Incorporate fairness and
diversity in the algorithms
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Success story 4: Online Labour Marketplaces

How can we form teams of experts online when compatibility between
workers is modelled by a social network?

How can we decide online when to use outsourced workers, when to
hire workers in a team and when to fire inactive workers?

How to limit the disparate impact of machine learning systems in
online labor marketplaces and impose equality of gender and ethnic
groups?

How to provide the right incentives to workers and charge the right
payments to outsourcing companies?
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Internet, Equilibria in games

The Internet is a socio-economic system formed by a multitude of
agents (buyers, sellers, publishers, ISP, political organizations,..)

The strategic interaction among Internet agents is regulated by
algorithms

The central notion of Game theory and Market economics is the one
of equilibrium

An equilibrium is an outcome of a game such that no agent has any
incentive to deviate
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Example 1: GPS Car Navigation
A GPS car navigator chooses at any time the shortest path to
destination
Does this converge to an equilibrium or does it oscillate?
Does it produce low congestion traffic?

	

Algorithms, Data Science, and Markets September 5, 2019 17 / 83



Game theoretical and Algorithmic questions

Does an equilibrium state exist?

Does an efficient algorithm exist?

How fast is the convergence to an equilibrium state?

How efficient is the equilibrium state with respect to an optimal
centralised solution

How good is the market’s invisible hand?

Which type of incentives are needed to motivate agents to act in the
global interest
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Prisoner’s Dilemma - Dominant Strategies
The most desirable notion of equilibrium is the dominant strategy
equlibrium: each player has a best strategy to be played whatever
strategy is played by the others
The prisoner’s dilemma has a dominant strategy: confess,confess
A dominant strategy can be computed by analysing all the strategies
of each player
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Games in Strategic Normal Form

A game is defined by a set of strategies for each agent.

We consider one shot games

The state of a game is the combination of strategies played by the
agents

In each state there is a payoff for each agent

Players are rationals and selfish, their only goal is to maximise
individual utility

A game with two players is called a two-player game

A game with sum of payoffs equal to 0 in each state is called
zero-sum game

[Von Neumann and Morgenstern, 1944]
Many more definitions and practical settings
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Battle of the Sexes - Pure Nash Equilibria
There is no dominant strategy: the strategy played depends on the
choice of the other agent
There are two Pure Nash Equilibria: there is no incentive to deviate if
the other player does not deviate
To find a Pure Nash equilibrium it is required to analyse all the states
of the game.
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Rock Scissors Paper - Mixed Nash Equilibria
It does not exist any Pure Nash Equilibria
A mixed strategy is a probability distribution over a set of strategies,
e.g., 1/3, 1/3, 1/3.
A Mixed Nash Equilibrium is a collection of mixed strategies - one for
agent - such that no agent has any incentive to deviate.

Theorem (Nash, 1951)

It always exists a Mixed Nash Equilibrium in game in strategic normal
form.
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Zero-sum games
The Mixed-Nash Equilibrium can be found efficiently in a two-player zero
sum game [Von Neumann, 1928].
Application of the min-max principle:

Assume the column player knows the strategy played by the row
player.
The column player will respond with the strategy that maximises her
payoff
Then, the row player will play the strategy that can be responded
with the minimum maximum payoff of the opponent.
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The min-max principle
[von Neumann 1928]

The problem reduces to finding the extreme point of a polyedra
described by a set of linear equations that maximises the minimum
payoff.
The problem can be solved efficiently (polynomial time) by a Linear
Programming solver.
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Mixed Nash Equilibria in General Games

The complexity of the problem of computing a MNE in a two-player
non zero-sum game has been open till very recently

One possibility to reach an equilibrium state is to let the two players
to play a best response game till they reach an equlibrium

A MNE can be seen as the fixed point of a best response function
F (a1, a2) = (a1, a2) with (a1,a2) the two mixed strategies of the two
players.

The existence of a Nash Equilibrium can be demonstrated by using
the Sperner’s Lemma on the coloring of an arbitrarily dense triangle
decomposition
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Sperner’s Lemma, 1928
Vertices A,B and C have different colors
All vertices on one side (e.g., AB) do not have the colour of the
opposite vertex (e.g., C)
the remaining vertices can have any colour
Sperner’s Lemma claims the existence of a triangle with the three
vertices coloured differently
A best response dynamic navigating the decomposition by only
crossing black/white edges will eventually reach the triangle with
three colours.
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Complexity of finding a MNE

The problem can be solved by enumerating all possible subset of
strategies forming the support of the two mixed strategies.

There are 2|S | different supports for a set S of strategies

The problem of finding an efficient algorithm for finding a MNE was
opened for decades.

The best response dynamic may take an exponential number of steps
before to converge even in a two-player game.
[Daskalakis, Goldberg and Papadimitriou, 2005, Chen and Deng,
2005]
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The price of Anarchy

Rational agents are only driven by their own interest

They respond in any state outside equilibrium with a strategy which
improves the individual utility.

How good is the social welfare achieved at the equilibrium?

Social welfare is defined as the sum of the payoffs of the agents.

The tragedy of commons: the social welfare of an equilibrium is much
worst that the optimum social welfare.

The price of Anarchy [Koutsoupias and Papadimitriou, 1998] is a
quantitative measure of this degradation.
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Driving with a navigator
Which is the impact on traffic of a GPS navigator that routes each
car on a lowest latency path?
Does it reach an equilibrium? Yes, it is a potential game! [Monderer
and Shapley, 1996]
How bad is the equilibrium with respect to an optimum routing
scheme with cars obeying to a central coordinator?
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Routing games
Each agent needs to move a car move from source to destination
The set of strategies is given by the different itineraries
The travel time (latency) depends from the number of cars (flow)
that choose the same itinerary
The only equilibrium is the one with one unit of traffic on the bottom
edge. It has cost 1x1 = 1
The optimal solution will split the traffic between the two itineraries,
with a total cost 1/2x1 + 1/2x1/2 = 3/4
The Price of Anarchy is equal to 1/(3/4) = 4/3.
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Braess’ Paradox
In the first network, the 1 unit flow splits at the equilibrium between
the two paths with cost 0.5x(1 + 1/2) + 0.5(1 + 1/2) = 3/2
We now add a superfast link (0 cost) to improve our network
In the second network, the whole traffic goes through the superfast
link with a cost 1x(1 + 1) = 2
The price of Anarchy is equal to 2/(3/2) = 4/3
Tim Roughgarden and va Tardos [2001] proved that for any arbitrarily
complicated network with linear delay costs on the links (ax + b) the
Price of Anarchy is never worst that 4/3!
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Internet Advertising
Search Ads are sold with online electronic auction
Goods on Ebay are sold with online electronic auctions
Prices are set in order to bring markets to equilibria: Demand = Offer
Prices are decided by algorithms for the Internet markets, the sharing
economy and many other economic activities
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Auction design
The internet advertising economy boomed since Google decided in
2004 to use the second price auction
In second price auction the item is given to the bidder with highest
bid at price equal to the second highest bid
Before 2014, search ads were sold using the first price auction: the
price is the highest bid
First price auction does not posses a dominant strategy equilibrium
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Vickrey Second Price Sealed Bid Auction [1961]
Bidder i has valuation vi for the good on sale
Bidder i communicates bid bi to the auctioneer in a sealed envelope
The item is sold to the bidder with highest bid at price p equal to the
second highest bid
The utility of bidder i is ui − p if he gets the item, 0 otherwise
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Equilibria in Second Price Auction
Second price auction has a dominant strategy equilibrium for each
agent: bid the true value bi = vi
A similar auction is called Dominant strategy incentive compatible
Bidding higher than vi can lead to buy at price higher than valuation
Bidding lower than vi can lead to loose the item when it is sold at
price lower than vi
The mechanism can be generalised to many other auction settings
[Vickrey, Clarke, Groves, 1973]
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Conclusions of the Introduction...

Economic decisions are taken more and more often by algorithms

There are several barriers to the reach of good equilibria between
agents:

computational complexity
coordination between agents
selfish behaviour

In the last two decades Economics and Computer Science have made
huge progresses in modelling and quantifying these phenomena
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Coming next

I. Algorithmic Mechanism Design for Two-sided Markets

II. Algorithms for Online Labour marketplaces
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I. Algorithmic Mechanism
Design for Two-sided Markets

Based on joint work with Riccardo Colini Baldeschi (Facebook), Paul
Goldberg (Oxford), Bart de Keijzer (King’s College), Tim Roughgarden

(Columbia), Stefano Turchetta (Twente & NTT DATA)
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One-sided vs Two-sided Markets

One-sided markets:

Adword auctions

Ebay auctions

Two-sided market:

Ad Exchange for display ads

Online labor marketplaces

Sharing economy (Uber, Airbnb, Lift, ..)

Electricity market

Stock exchange
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Two-sided auctions
Selling display ads is an example of a two-sided market
Need to provide incentives to both buyers/advertisers and
sellers/publishers that act strategically
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Mechanism Design for One-sided Markets

Suppose we have k items and n interested buyers. We want to sell the
items by interacting with the buyers.

Each buyer i ∈ [n] = {1, . . . , n} holds a private valuation vi ∈ R≥0
with distribution Fi (vi ) =

∫
x≤vi fi (x)dx .

quasi-linear utility model:

xi ∈ {0, 1} indicates whether buyer i gets the item.
pi is the price that buyer i pays to the mechanism.
The utility ui (x,p) is then xivi − pi .

Buyers behave rationally.
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Mechanism Design

Q: How to maximize social welfare with Incentive Compatible mechanisms?

SW =
∑
i∈[n]

xivi

Ensure that we sell the item to the k buyers with highest valuation!

The Vickrey auction does it

Buyers submit their bids: Direct Revelation Mechanism

The Vickrey auction charges a price equal to the k + 1-th highest bid.

The Vickrey auction is Incentive Compatible (IC)
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Revenue maximization

Bayesian setting is relevant:

Known valuation distribution Fi of bidder

Offer monopoly price:

ri = argmaxp[p(1− Fi (p))].

Second price auction with reserve price is optimal [Myerson, 1981]

1 item, 1 bidder U[0, 1], r = 1/2

1 item, 2 bidders U[0, 1]:

second price auction with reserve price 1/2 achieves revenue
5/12 > 1/3
second price auction without reserve price achieves revenue 1/3
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One-sided vs Two-sided Markets

In a one-sided market, the mechanism itself sells the item(s).

In a two-sided market, the items are “sold” to the buyers by strategic
agents called sellers.

Mechanism is external entity and decides on the buyers and sellers
who trade, and at which price.
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A Standard Two-Sided Market Setting (1/2)

Double auctions

There are k sellers, each with an identical copy of a single good for
sale.

There are n buyers, each interested only in receiving one copy of the
good.

wj : the valuation of seller j , drawn from distribution Gj .

vi : the valuation of buyer i , drawn from Fi .
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A Standard Two-Sided Market Setting (2/2)

An outcome consists of

buyer allocation vector xB ∈ {0, 1}n

seller allocation vector xS ∈ {0, 1}k

buyer payment vector pB ∈ Rn

seller payment vector pS ∈ Rk .

Negative payment means receiving money.

The utility model is symmetric for buyers and sellers:

Buyer i ’s utility is xBi vi − pBi .

Seller j ’s utility is xSj wj − pSj .
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Ideal goals

Maximize Social Welfare

SW =
∑
i∈[n]

xBi vi +
∑
j∈[k]

xSj wj

Individual Rationality (IR), no agent gets negative utility

Incentive Compatibility (IC) on the buyer and on the seller side

We want our double auction to be Budget Balanced (BB):∑
i∈[n]

pBi +
∑
j∈[k]

pSj = 0.

Weak Budget Balanced (BB):
∑

i∈[n] p
B
i +

∑
j∈[k] p

S
j ≥ 0.

The mechanism cannot subsidize the market (WBB) or make a
surplus (BB)
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Myerson and Satterthwaite impossibility results

Maximize Social Welfare is not possible with an (B)IC, IR, (W)BB
mechanism
[Myerson and Satterthwaite, 1983]

The results holds even for only one buyer and one seller with known
distributions

The Second best BIC optimal mechanism provided in [MS83] is
extremely complex and it does not have a closed form

There is no guarantee on the Social Welfare that can be obtained by
the mechanism
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Approximately optimal mechanisms

Seek for meaningful trade-offs between the IC, IR and BB requirements.

Double auction mechanisms proposed in literature are either:

not IC
not BB
or do not have a good social welfare

Many “large market” IR, IC, WBB results.

[McAfee 92]
[Dütting, Talgam-Cohen, Roughgarden, 2014]
[Blumrosen, Dobzinski, 2015]
[Segal-Halevi et al, 2016]
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Trade-reduction Mechanism [McAfee 92]

Order the buyers in decreasing order and the sellers in increasing
order and find the breakeven index l.

The first l − 1 sellers give the item and receive wl from the auctioneer;

The first l − 1 buyers receive the item and pay vl to the auctioneer.

The mechanism is IC, WBB and achieve a 1− 1/l approximation of the
optimal social welfare.
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The Bilateral Trade Problem, n = 1, k = 1

The double auction problem for one buyer with valuation v drawn
from F and one seller with valuation w drawn from G .

A trade is possible if w ≤ v . Optimum social welfare:

OPT = EG [w ] + EF ,G [v − w |w ≤ v ]Pb[w ≤ v ]

= E[Seller value] + E[Gain from trade]

Every (DS)IC, BB mechanism is a posted price mechanism
[Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016]

How do we choose p in order to maximize

ALG = EG [w ] + EF ,G [v − w |w ≤ p ≤ v ]Pb[w ≤ p ≤ v ]

Set p = mG , median of the seller distribution [McAfee 08]
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The Bilateral Trade Problem

McAfee algorithm is a 2-apx of the social welfare [Blumrosen, Dobzinski,
’15]:

OPT = EG [w ] + EF ,G [v − w |w ≤ p ≤ v ]Pb[w ≤ p ≤ v ]

+ EF ,G [v − w |w ≤ v ≤ p]Pb[w ≤ v ≤ p]

+ EF ,G [v − w |p ≤ w ≤ v ]Pb[p ≤ w ≤ v ]

≤ 2× EG [w ] + 2× EF ,G [v − w |w ≤ p ≤ v ]Pb[w ≤ p ≤ v ]

= 2× ALG ,

since Pb[w ≤ p] = Pb[w ≥ p] = 1/2

No deterministic algorithm which only depends on the seller
distribution can improve

A lower bound 1.33 and an upper bound 1.92 proved in
[Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016]
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The e/e − 1-apx randomized mechanism for bilateral trade

Randomized (e/e − 1) = 1.58-apx that depends only on the seller
distribution [Blumrosen, Dobzinski, ’16]

Random Quantile mechanism

Let q(·) be the quantile function of the seller, i.e., G (q(x)) = x .
Post a price chosen randomly to both players as follows:

Choose a number x ∈ [1/e, 1] according to the cumulative
distribution D(x) = ln(ex).

Set the price to be q(x).

No quantile mechanism that uses only the seller distribution can
achieve a better approximation

A more involved mechanism achieves an e/(e − 1)− 0.0001
approximation.

[Kang and Vondrak 2018]
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Proof of the random quantile mechanism
Assume the buyer has deterministic valuation b.
The seller has value at least b with pb 1− y .
Seller accepts price q(x) with pb x .
Density of price q(x) is d(x) = 1/x .

x

d(x)

1/e 1

e

1

1/x
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Proof of the random quantile mechanism

For a price q(x), x ∈ [1/e, y ], trade occurs with probability x , and the
realised efficiency is b:

QUANT (G , b) ≥
∫ y

1/e
x · b · 1

x
dx + b(1− y) (1)

= b

(
y − 1

e

)
+ b(1− y) (2)

= b

(
1− 1

e

)
(3)
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Algorithm OneSample

How many samples do we need if the distribution is unknown?

Algorithm OneSample

1 Sample p from seller’s distribution;

2 Post price p and allow the agents to trade.

Theorem

The algorithm OneSample provides a 2 approximation of the expected
maximal welfare.

[Dütting, Fusco, Lazos, Leonardi 2019]
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Algorithm SampleQuantile

The SampleQuantile Algorithm has parameters n ≥ 0,1/e > δ > 0:

1 Sample z ∈ [1/e, 1] with CDF ln(e · x).

2 Draw n samples from G .

3 Sort the samples in increasing order and choose the (z − δ
2e ) · n-th

one. Call that sample p.

4 Post price p and allow the agents to trade.

Theorem

For every ε ∈ (0, 4e ), given n = 16e2

ε2
log(4ε ) samples, SampleQuantile

provides an
(
1− 1

e − ε
)
approximation of the optimal expected social

welfare

[Dütting, Fusco, Lazos, Leonardi 2019]
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Sequential Posted Price Mechanisms

Definition

Sequential posted price (SPP) mechanisms offer one take-it-or-leave-it
price to each buyer according to some order until all the items are sold.

Why do we study SPP mechanisms?

Very popular mechanisms in practice

Conceptually simple.

Not direct revelation mechanisms

Buyers have obvious dominant strategies

They are easy to analyze

Seemingly needed for DSIC, BB double auction.

Drawback: Require prior information about buyer and seller valuations
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One-sided SPP mechanisms

There is an auctioneer with k identical items to sell.

There are n buyers. They want no more than 1 item.

For buyer i , valuation vi is drawn from a finite distribution Fi ∈ R≥0.

How well can SPP mechanisms approximate SW and revenue?

For social welfare the optimal mechanism is VCG

For revenue the optimal mechanism is Myerson
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SPP Mechanism [Chawla et al. (2010)]

For buyer i , let qi := Pr[Optimal mechanism gives item to buyer i ].

Let p̄i be such that Prvi∼Fi
[vi > p̄i ] = qi .

The SPP with prices p̄ = (p̄1, . . . , p̄n), offered in non-increasing order,
2-approximates revenue or social welfare of optimal mechanism.
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Adapting SPP Mechanisms for Two-Sided Markets (1/2)

SPP mechanisms are adapted to two-sided markets:

1 Decide on an order σ of the buyers.

2 Decide on an order λ of the sellers.

3 Decide on prices pij for all i ∈ [n], j ∈ [k].
4 Iteratively offer the price pij to the next buyer-seller pair (i , j)

according to σ and λ.

If both accept, let them trade at price pij . Allocate an item to i .
Deallocate an item from j . Charge pij to i and −pij to j .
Move to the next seller of λ. Move to the next buyer of σ.
If seller rejects, move to the next seller in λ.
If buyer rejects, move to the next buyer in σ.
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Adapting SPP Mechanisms for Two-Sided Markets (2/2)

Things to note about two-sided SPP mechanisms:

Inherently BB.

Behaving “truthfully” is not always a dominant strategy. However:

Lemma

If prices only depend on the buyer, and not on the seller (i.e., pij = pij ′ for
all i ∈ [n],j , j ′ ∈ [k]) and are posted in a non-increasing order, then
“truthfulness” is a dominant strategy.
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Approximation result for double auctions

Theorem

There exists a BB double auction with a dominant strategy that
6-approximates the expected optimal social welfare (even with an
additional matroid constraint on the set of buyers that trade).

[Colini-Baldeschi, de Keijzer, Goldberg, Leonardi, Roughgarden, and
Turchetta, 2016]
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Outline of a simpler mechanism

How this mechanism works:

For i ∈ [n], let p̄i denote the price from the single-sided mechanism.

Let σ denote the order of the buyers by decreasing p̄i (also according
to Chawla et al. (2010)).

Let λ be a uniform random ordering of the sellers.

Set pij = pi = max{p̄i ,m(k/2)} where m(k/2) is the median of the
sellers’ median valuations.
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Analysis of the mechanism (1/2)

Let at most k/4 pairs trade.

This leaves 3k/4 sellers with their item.

The sellers prepared to trade are the sellers with the lowest valuations.

So: (4/3)ALGs ≥ OPTs .
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Analysis of the mechanism (2/2)

Now the buyers’ side.

By charging at least m(k/2), we expect at least half of the sellers are
prepared to trade.

This implies: with probability at least 1/2, at least k/4 sellers are
prepared to trade.

In case pi = p̄i for all buyers in σ. We get
ALGb ≥ (1/2)(1/4)(1/2)OPTb.

In the case pi = m(k/2) for a subset of the buyers, some social welfare
on the buyers’ side may be lost.

In that case we show that there are corresponding sellers with a
higher valuation.

(4/3)ALGs + 16ALGb ≥ OPTb

Together:
16ALG ≥ (4/3)ALGs + (4/3)ALGs + 16ALGb ≥ OPTb + OPTs = OPT
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Outline

1 Part I: Mechanism Design in Two-sided Markets

2 Part II: Bilateral Trade

3 Part III: Two-sided Auctions

Two-sided Double Auctions
Two-sided Combinatorial Auctions

4 Conclusions
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Two-sided combinatorial auctions

Every vi and every wj map from 2[k] to R≥0
We will consider probability distributions over the following classes of
valuation functions:

v is additive iff v(S) =
∑

j∈S αjv({j}) for all S ⊆ [k] for some real
numbers αj .
v is fractionally subadditive (or XOS) if and only if there exists a
collection of additive functions a1, . . . , ad such that for every bundle
S ⊆ [k] it holds that v(S) = maxi∈[d ] ai (S)
Fractionally subadditive (or XOS) generalizes submodular functions
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The mechanism for two-sided combinatorial auctions

For each item j ∈ [k], let SW B
j (v) its expected contribution to the

social welfare.

Set pj := 1
2Ev

[
SW B

j (v)
]
.

For all j ∈ [k]:
1 Set qj := 1/(2Pr [wj ≤ pj ]).
2 With probability qj , offer payment pj in exchange for her item.

Otherwise, skip this seller.
3 If j accepts the offer, set Λ1 := Λ1 ∪ {j}.

For all i ∈ [n]:
1 Let D(vi ,p,Λi ) be the demand set of buyer i at price pj .
2 Buyer i chooses a bundle Bi ∈ D(vi ,p,Λi ).
3 Allocate the accepted items to buyer i
4 Λi+1 := Λi \ Bi .
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Results

A 6-approximate DSIC mechanism for buyers with XOS-valuations
and sellers with one item at their disposal (i.e., unit-supply sellers);

a 6-approximate BIC mechanism for buyers with XOS-valuations and
non-unit supply sellers with additive valuations;

a 6-approximate DSIC mechanism for buyers with additive valuations
and sellers with additive valuations.

[Colini-Baldeschi, de Keijzer, Goldberg, Leonardi, Roughgarden, Turchetta,
2017]
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Conclusions on Two-sided Market Design

Algorithmic mechanism design in two-sided markets finds many
relevant applications to digital markets

Simple mechanisms achieve good efficiency while obeying the IR, IC,
BB requirements

Many open problems and applications to digital markets
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Conclusions of the first part.

Economic decisions are taken more and more often by algorithms

There are several barriers to the reach of good equilibria between
agents:

computational complexity
coordination between agents
selfish behaviour

In the last two decades Economics and Computer Science have made
huge progresses in modelling and quantifying these phenomena
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Conclusions

Many topics have not been touched in this talk:

Repeated games

Mechanism design for social good

Social choice and voting

Behavioural cues, e.g., altruistic or myopic behaviour

Complex market structures

Many applications to the modelling of social systems and biological
evolution
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Coming next

II. Algorithms for Online Labour marketplaces
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