Algorithms, Data Science, and Online Markets

Stefano Leonardi

Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG) Sapienza University of Rome

September 2-6, 2019
Data Science Summer School - Pisa

Stefano Leonardi

- Leader of the Research Group on Algorithms and Data Science at DIAG - Sapienza
- ERC Advanced Grant
"Algorithms and Mechanism
Design Research in Online MArkets" (AMDROMA)
- Chair of the PhD program in Data Science at Sapienza
- Past Chair of the Master's Degree in Data Science at Sapienza
- Fellow of the European Association for Theoretical

Research Interests:

- Algorithmic Theory
- Algorithmic Data Analysis
- Economics and Computation
 Computer Science

Outline

(1) Part I: Algorithms, Data Science and Markets
(2) Part II: Internet, Equilibria and Games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(6) Part V: The price of Anarchy
(0) Part VI: Equilibria in markets
(Conclusions

Algorithms, Data Science, and Markets

- Digital markets form an important share of the global economy.
- Many classical markets moved to Internet: real-estate, stocks, e-commerce, entarteinment
- New markets with previously unknown features have emerged: web-based advertisement, viral marketing, digital goods, online labour markets, sharing economy

An Economy of Algorithms

- In 2000, we had 600 humans making markets in U.S. stocks. Today, we have two people and a lot of software. One in three Goldman Sachs employees are engineers
R. Martin Chavez, Chief Financial Officer at Goldman Sachs
[Data,Dollars,and Algorithms: The Computational Economy, Harvard, 2017]

An Economy of Algorithms

Algorithms take many economic decisions in our life:

- Rank web pages in search engines
- Trade stocks
- Run Ebay auctions
- Price Uber trips
- Kidney exchange
- Internet dating
- Assign interns to hospitals and pupils to schools
- Sell Ads on Webpages
- Price electric power in grids

Success story 1: Internet Advertising

- Provide the major source of revenue of the Internet Industry, more than 90% for Google
- Electronic auctions are executed billions of times a day within the time frame of few hundred milliseconds.
- Many new auction design and big data algorithmic problems are motivated by online markets

Success story 1: Internet Advertising

 Selling display ads on the spot market.

Success story 2: Digital Markets

- Need a theory for markets run by algorithms

- Do prices that induce efficient equilibria between buyers and sellers exist?
- Provide incentives to service providers (convince Uber riders to get up at night!) and to consumers to stay in the market.

Success story 2: Digital Markets

- Algorithmic problems in online markets are not standard since they work on inputs that are private information of economic agents
- Algorithmic mechanism design deals with the design of incentives that make agents to report honestly their private information to the algorithm.
- How hard is to find equilibria in markets operated by algorithms? If your laptop cannot find the equilibrium, your system cannot do it either!

Success story 3: Matching Markets

- Goal. Given a set of preferences among hospitals and med-school students, design a self-reinforcing admissions process.
- Unstable pair. Hospital h and student s form an unstable pair if both:
- h prefers s to one of its admitted students.
- s prefers h to assigned hospital.
- Stable assignment. Assignment with no unstable pairs.
- Natural and desirable condition.
- Individual self-interest prevents any hospital-student side deal.

Success story 3: Matching Markets

- Gale-Shapley algorithm computes a stable matching
- 2012 Nobel Prize in Economics:
- Lloyd Shapley. Stable matching theory and GaleShapley algorithm.
- Alvin Roth: Applied GaleShapley to matching med-school students with hospitals, students with schools, and organ donors with patients.

Algorithms are nowadays running matching markets also on digital platforms, large-scale organ transplants projects.

Success story 4: Online Labour Marketplaces

- Outsource complex tasks to workforce recruited on the cloud
- Algorithmic methods for job scheduling, task allocation, team formation, and distributed coordination.
- Incorporate fairness and diversity in the algorithms

freelancer
 Uowork

Siguru
 Cజ్జ్ CrowdFlower

Elance

Success story 4: Online Labour Marketplaces

- How can we form teams of experts online when compatibility between workers is modelled by a social network?
- How can we decide online when to use outsourced workers, when to hire workers in a team and when to fire inactive workers?
- How to limit the disparate impact of machine learning systems in online labor marketplaces and impose equality of gender and ethnic groups?
- How to provide the right incentives to workers and charge the right payments to outsourcing companies?

Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Internet, Equilibria and Games
(3) Part III: Games and solution concepts
(1) Part IV: The complexity of finding equilibria
(5) Part V: The price of Anarchy
(0) Part VI: Equilibria in markets
(Conclusions

Internet, Equilibria in games

- The Internet is a socio-economic system formed by a multitude of agents (buyers, sellers, publishers, ISP, political organizations,..)
- The strategic interaction among Internet agents is regulated by algorithms
- The central notion of Game theory and Market economics is the one of equilibrium
- An equilibrium is an outcome of a game such that no agent has any incentive to deviate

Example 1: GPS Car Navigation

- A GPS car navigator chooses at any time the shortest path to destination
- Does this converge to an equilibrium or does it oscillate?
- Does it produce low congestion traffic?

Game theoretical and Algorithmic questions

- Does an equilibrium state exist?
- Does an efficient algorithm exist?
- How fast is the convergence to an equilibrium state?
- How efficient is the equilibrium state with respect to an optimal centralised solution
- How good is the market's invisible hand?
- Which type of incentives are needed to motivate agents to act in the global interest

Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Algorithms, Complexity and games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(5) Part V: The price of Anarchy
(6) Part VI: Equilibria in markets
(Conclusions

Prisoner's Dilemma - Dominant Strategies

- The most desirable notion of equilibrium is the dominant strategy equlibrium: each player has a best strategy to be played whatever strategy is played by the others
- The prisoner's dilemma has a dominant strategy: confess,confess
- A dominant strategy can be computed by analysing all the strategies of each player

c_{1}, c_{2}	confess	silent
confess	4,4	1,5
silent	5,1	2,2

Games in Strategic Normal Form

- A game is defined by a set of strategies for each agent.
- We consider one shot games
- The state of a game is the combination of strategies played by the agents
- In each state there is a payoff for each agent
- Players are rationals and selfish, their only goal is to maximise individual utility
- A game with two players is called a two-player game
- A game with sum of payoffs equal to 0 in each state is called zero-sum game
[Von Neumann and Morgenstern, 1944]
Many more definitions and practical settings

Battle of the Sexes - Pure Nash Equilibria

- There is no dominant strategy: the strategy played depends on the choice of the other agent
- There are two Pure Nash Equilibria: there is no incentive to deviate if the other player does not deviate
- To find a Pure Nash equilibrium it is required to analyse all the states of the game.

Game		Player 2	
	Boxing	Ballet	
Player 1	Boxing	$(2,1)$	$(0,0)$
	Ballet	$(0,0)$	$(1,2)$

Rock Scissors Paper - Mixed Nash Equilibria

- It does not exist any Pure Nash Equilibria
- A mixed strategy is a probability distribution over a set of strategies, e.g., $1 / 3,1 / 3,1 / 3$.
- A Mixed Nash Equilibrium is a collection of mixed strategies - one for agent - such that no agent has any incentive to deviate.

Theorem (Nash, 1951)

It always exists a Mixed Nash Equilibrium in game in strategic normal form.

u_{1}, u_{2}	rock	paper	scissors
rock	0,0	$-1,1$	$1,-1$
paper	$1,-1$	0,0	$-1,1$
scissors	$-1,1$	$1,-1$	0,0

Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Algorithms, Complexity and games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(6) Part V: The price of Anarchy
(6) Part VI: Equilibria in markets
(Conclusions

Zero-sum games

The Mixed-Nash Equilibrium can be found efficiently in a two-player zero sum game [Von Neumann, 1928].
Application of the min-max principle:

- Assume the column player knows the strategy played by the row player.
- The column player will respond with the strategy that maximises her payoff
- Then, the row player will play the strategy that can be responded with the minimum maximum payoff of the opponent.

	C	D
A	2	-1
B	1	3

The min-max principle

[von Neumann 1928]

- The problem reduces to finding the extreme point of a polyedra described by a set of linear equations that maximises the minimum payoff.
- The problem can be solved efficiently (polynomial time) by a Linear Programming solver.

$$
\begin{gathered}
\max v \\
2 a+b \geq v \\
-a+3 b \geq v \\
a+b=1 \\
a, b \geq 0 .
\end{gathered}
$$

Mixed Nash Equilibria in General Games

- The complexity of the problem of computing a MNE in a two-player non zero-sum game has been open till very recently
- One possibility to reach an equilibrium state is to let the two players to play a best response game till they reach an equlibrium
- A MNE can be seen as the fixed point of a best response function $F(a 1, a 2)=(a 1, a 2)$ with $(a 1, a 2)$ the two mixed strategies of the two players.
- The existence of a Nash Equilibrium can be demonstrated by using the Sperner's Lemma on the coloring of an arbitrarily dense triangle decomposition

Sperner's Lemma, 1928

- Vertices A, B and C have different colors
- All vertices on one side (e.g., AB) do not have the colour of the opposite vertex (e.g., C)
- the remaining vertices can have any colour
- Sperner's Lemma claims the existence of a triangle with the three vertices coloured differently
- A best response dynamic navigating the decomposition by only crossing black/white edges will eventually reach the triangle with three colours.

Complexity of finding a MNE

- The problem can be solved by enumerating all possible subset of strategies forming the support of the two mixed strategies.
- There are $2^{|S|}$ different supports for a set S of strategies
- The problem of finding an efficient algorithm for finding a MNE was opened for decades.
- The best response dynamic may take an exponential number of steps before to converge even in a two-player game. [Daskalakis, Goldberg and Papadimitriou, 2005, Chen and Deng, 2005]

Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Internet, Equilibria and Games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(5) Part V: The price of Anarchy
(0) Part VI: Equilibria in markets
(Conclusions

The price of Anarchy

- Rational agents are only driven by their own interest
- They respond in any state outside equilibrium with a strategy which improves the individual utility.
- How good is the social welfare achieved at the equilibrium?
- Social welfare is defined as the sum of the payoffs of the agents.
- The tragedy of commons: the social welfare of an equilibrium is much worst that the optimum social welfare.
- The price of Anarchy [Koutsoupias and Papadimitriou, 1998] is a quantitative measure of this degradation.

Driving with a navigator

- Which is the impact on traffic of a GPS navigator that routes each car on a lowest latency path?
- Does it reach an equilibrium? Yes, it is a potential game! [Monderer and Shapley, 1996]
- How bad is the equilibrium with respect to an optimum routing scheme with cars obeying to a central coordinator?

Routing games

- Each agent needs to move a car move from source to destination
- The set of strategies is given by the different itineraries
- The travel time (latency) depends from the number of cars (flow) that choose the same itinerary
- The only equilibrium is the one with one unit of traffic on the bottom edge. It has cost $1 \times 1=1$
- The optimal solution will split the traffic between the two itineraries, with a total cost $1 / 2 \times 1+1 / 2 \times 1 / 2=3 / 4$
- The Price of Anarchy is equal to $1 /(3 / 4)=4 / 3$.

Braess' Paradox

- In the first network, the 1 unit flow splits at the equilibrium between the two paths with cost $0.5 \times(1+1 / 2)+0.5(1+1 / 2)=3 / 2$
- We now add a superfast link (0 cost) to improve our network
- In the second network, the whole traffic goes through the superfast link with a cost $1 x(1+1)=2$
- The price of Anarchy is equal to $2 /(3 / 2)=4 / 3$
- Tim Roughgarden and va Tardos [2001] proved that for any arbitrarily complicated network with linear delay costs on the links $(a x+b)$ the Price of Anarchy is never worst that 4/3!

Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Internet, Equilibria and Games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(5) Part V: The price of Anarchy
(0) Part VI: Equilibria in markets
(Conclusions

Internet Advertising

- Search Ads are sold with online electronic auction
- Goods on Ebay are sold with online electronic auctions
- Prices are set in order to bring markets to equilibria: Demand $=$ Offer
- Prices are decided by algorithms for the Internet markets, the sharing economy and many other economic activities

Auction design

- The internet advertising economy boomed since Google decided in 2004 to use the second price auction
- In second price auction the item is given to the bidder with highest bid at price equal to the second highest bid
- Before 2014, search ads were sold using the first price auction: the price is the highest bid
- First price auction does not posses a dominant strategy equilibrium

Vickrey Second Price Sealed Bid Auction [1961]

- Bidder i has valuation v_{i} for the good on sale
- Bidder i communicates bid b_{i} to the auctioneer in a sealed envelope
- The item is sold to the bidder with highest bid at price p equal to the second highest bid
- The utility of bidder i is $u_{i}-p$ if he gets the item, 0 otherwise

Second-Price Auction

Equilibria in Second Price Auction

- Second price auction has a dominant strategy equilibrium for each agent: bid the true value $b_{i}=v_{i}$
- A similar auction is called Dominant strategy incentive compatible
- Bidding higher than v_{i} can lead to buy at price higher than valuation
- Bidding lower than v_{i} can lead to loose the item when it is sold at price lower than v_{i}
- The mechanism can be generalised to many other auction settings [Vickrey, Clarke, Groves, 1973]

[^0]
Outline

(1) Part I: Algorithms, Data and Markets
(2) Part II: Internet, Equilibria and Games
(3) Part III: Games and solution concepts
(4) Part IV: The complexity of finding equilibria
(5) Part V: The price of Anarchy
(6) Part VI: Equilibria in markets
(3) Conclusions

Conclusions of the Introduction...

- Economic decisions are taken more and more often by algorithms
- There are several barriers to the reach of good equilibria between agents:
- computational complexity
- coordination between agents
- selfish behaviour
- In the last two decades Economics and Computer Science have made huge progresses in modelling and quantifying these phenomena

Coming next

- I. Algorithmic Mechanism Design for Two-sided Markets
- II. Algorithms for Online Labour marketplaces

I. Algorithmic Mechanism Design for Two-sided Markets

Based on joint work with Riccardo Colini Baldeschi (Facebook), Paul Goldberg (Oxford), Bart de Keijzer (King's College), Tim Roughgarden (Columbia), Stefano Turchetta (Twente \& NTT DATA)

Outline

(1) Part I: Mechanism Design in Two-sided Markets
(2) Part II: Bilateral Trade
(3) Part III: Two-sided Auctions
((Conclusions

One-sided vs Two-sided Markets

One-sided markets:

- Adword auctions
- Ebay auctions

Two-sided market:

- Ad Exchange for display ads
- Online labor marketplaces
- Sharing economy (Uber, Airbnb, Lift, ..)
- Electricity market
- Stock exchange

Two-sided auctions

- Selling display ads is an example of a two-sided market
- Need to provide incentives to both buyers/advertisers and sellers/publishers that act strategically

Mechanism Design for One-sided Markets

Suppose we have k items and n interested buyers. We want to sell the items by interacting with the buyers.

- Each buyer $i \in[n]=\{1, \ldots, n\}$ holds a private valuation $v_{i} \in \mathbb{R}_{\geq 0}$ with distribution $F_{i}\left(v_{i}\right)=\int_{x \leq v_{i}} f_{i}(x) d x$.
- quasi-linear utility model:
- $x_{i} \in\{0,1\}$ indicates whether buyer i gets the item.
- p_{i} is the price that buyer i pays to the mechanism.
- The utility $u_{i}(\mathbf{x}, \mathbf{p})$ is then $x_{i} v_{i}-p_{i}$.
- Buyers behave rationally.

Mechanism Design

Q: How to maximize social welfare with Incentive Compatible mechanisms?

$$
S W=\sum_{i \in[n]} x_{i} v_{i}
$$

- Ensure that we sell the item to the k buyers with highest valuation!
- The Vickrey auction does it
- Buyers submit their bids: Direct Revelation Mechanism
- The Vickrey auction charges a price equal to the $k+1$-th highest bid.
- The Vickrey auction is Incentive Compatible (IC)

Revenue maximization

Bayesian setting is relevant:

- Known valuation distribution F_{i} of bidder
- Offer monopoly price:

$$
r_{i}=\operatorname{argmax}_{p}\left[p\left(1-F_{i}(p)\right)\right] .
$$

Second price auction with reserve price is optimal [Myerson, 1981]

- 1 item, 1 bidder $U[0,1], r=1 / 2$
- 1 item, 2 bidders $U[0,1]$:
- second price auction with reserve price $1 / 2$ achieves revenue $5 / 12>1 / 3$
- second price auction without reserve price achieves revenue $1 / 3$

One-sided vs Two-sided Markets

- In a one-sided market, the mechanism itself sells the item(s).
- In a two-sided market, the items are "sold" to the buyers by strategic agents called sellers.
- Mechanism is external entity and decides on the buyers and sellers who trade, and at which price.

A Standard Two-Sided Market Setting (1/2)

Double auctions

- There are k sellers, each with an identical copy of a single good for sale.
- There are n buyers, each interested only in receiving one copy of the good.
- w_{j} : the valuation of seller j, drawn from distribution G_{j}.
- v_{i} : the valuation of buyer i, drawn from F_{i}.

A Standard Two-Sided Market Setting (2/2)

An outcome consists of

- buyer allocation vector $\mathbf{x}^{B} \in\{0,1\}^{n}$
- seller allocation vector $\mathbf{x}^{S} \in\{0,1\}^{k}$
- buyer payment vector $\mathbf{p}^{B} \in \mathbb{R}^{n}$
- seller payment vector $\mathbf{p}^{S} \in \mathbb{R}^{k}$.

Negative payment means receiving money.
The utility model is symmetric for buyers and sellers:

- Buyer i 's utility is $x_{i}^{B} v_{i}-p_{i}^{B}$.
- Seller j 's utility is $x_{j}^{S} w_{j}-p_{j}^{S}$.

Ideal goals

- Maximize Social Welfare

$$
S W=\sum_{i \in[n]} x_{i}^{B} v_{i}+\sum_{j \in[k]} x_{j}^{S} w_{j}
$$

- Individual Rationality (IR), no agent gets negative utility
- Incentive Compatibility (IC) on the buyer and on the seller side
- We want our double auction to be Budget Balanced (BB):

$$
\sum_{i \in[n]} p_{i}^{B}+\sum_{j \in[k]} p_{j}^{S}=0
$$

- Weak Budget Balanced (BB): $\sum_{i \in[n]} p_{i}^{B}+\sum_{j \in[k]} p_{j}^{S} \geq 0$.
- The mechanism cannot subsidize the market (WBB) or make a surplus (BB)

Myerson and Satterthwaite impossibility results

Maximize Social Welfare is not possible with an (B)IC, IR, (W)BB mechanism
[Myerson and Satterthwaite, 1983]

- The results holds even for only one buyer and one seller with known distributions
- The Second best BIC optimal mechanism provided in [MS83] is extremely complex and it does not have a closed form
- There is no guarantee on the Social Welfare that can be obtained by the mechanism

Approximately optimal mechanisms

Seek for meaningful trade-offs between the IC, IR and BB requirements.

- Double auction mechanisms proposed in literature are either:
- not IC
- not BB
- or do not have a good social welfare
- Many "large market" IR, IC, WBB results.
[McAfee 92]
[Dütting, Talgam-Cohen, Roughgarden, 2014]
[Blumrosen, Dobzinski, 2015]
[Segal-Halevi et al, 2016]

Trade-reduction Mechanism [McAfee 92]

- Order the buyers in decreasing order and the sellers in increasing order and find the breakeven index 1 .
- The first $I-1$ sellers give the item and receive w_{l} from the auctioneer;
- The first $I-1$ buyers receive the item and pay v_{l} to the auctioneer.

The mechanism is IC, WBB and achieve a $1-1 / I$ approximation of the optimal social welfare.

Outline

(1) Part I: Mechanism Design in Two-sided Markets
(2) Part II: Bilateral Trade
(3) Part III: Double Auctions
(3) Conclusions

The Bilateral Trade Problem, $n=1, k=1$

- The double auction problem for one buyer with valuation v drawn from F and one seller with valuation w drawn from G.
- A trade is possible if $w \leq v$. Optimum social welfare:

$$
\begin{aligned}
O P T & =\mathrm{E}_{G}[w]+\mathrm{E}_{F, G}[v-w \mid w \leq v] \mathrm{Pb}[w \leq v] \\
& =\mathrm{E}[\text { Seller value }]+\mathrm{E}[\text { Gain from trade }]
\end{aligned}
$$

- Every (DS)IC, BB mechanism is a posted price mechanism [Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016]
- How do we choose p in order to maximize

$$
A L G=\mathrm{E}_{G}[w]+\mathrm{E}_{F, G}[v-w \mid w \leq p \leq v] \mathrm{Pb}[w \leq p \leq v]
$$

- Set $p=m_{G}$, median of the seller distribution [McAfee 08]

The Bilateral Trade Problem

McAfee algorithm is a 2-apx of the social welfare [Blumrosen, Dobzinski, '15]:

$$
\begin{aligned}
O P T & =\mathrm{E}_{G}[w]+\mathrm{E}_{F, G}[v-w \mid w \leq p \leq v] \mathrm{Pb}[w \leq p \leq v] \\
& +\mathrm{E}_{F, G}[v-w \mid w \leq v \leq p] \mathrm{Pb}[w \leq v \leq p] \\
& +\mathrm{E}_{F, G}[v-w \mid p \leq w \leq v] \mathrm{Pb}[p \leq w \leq v] \\
& \leq 2 \times \mathrm{E}_{G}[w]+2 \times \mathrm{E}_{F, G}[v-w \mid w \leq p \leq v] \mathrm{Pb}[w \leq p \leq v] \\
& =2 \times A L G,
\end{aligned}
$$

since $\mathrm{Pb}[w \leq p]=\mathrm{Pb}[w \geq p]=1 / 2$

- No deterministic algorithm which only depends on the seller distribution can improve
- A lower bound 1.33 and an upper bound 1.92 proved in [Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016]

The e/e-1-apx randomized mechanism for bilateral trade Randomized $(e / e-1)=1.58$-apx that depends only on the seller distribution [Blumrosen, Dobzinski, '16]

Random Quantile mechanism

Let $q(\cdot)$ be the quantile function of the seller, i.e., $G(q(x))=x$. Post a price chosen randomly to both players as follows:

- Choose a number $x \in[1 / e, 1]$ according to the cumulative distribution $D(x)=\ln (e x)$.
- Set the price to be $q(x)$.
- No quantile mechanism that uses only the seller distribution can achieve a better approximation
- A more involved mechanism achieves an $e /(e-1)-0.0001$ approximation.
[Kang and Vondrak 2018]

Proof of the random quantile mechanism

- Assume the buyer has deterministic valuation b.
- The seller has value at least b with $\mathrm{pb} 1-y$.
- Seller accepts price $q(x)$ with $\mathrm{pb} x$.
- Density of price $q(x)$ is $d(x)=1 / x$.

Proof of the random quantile mechanism

For a price $q(x), x \in[1 / e, y]$, trade occurs with probability x, and the realised efficiency is b :

$$
\begin{align*}
\operatorname{QUANT}(G, b) & \geq \int_{1 / e}^{y} x \cdot b \cdot \frac{1}{x} d x+b(1-y) \tag{1}\\
& =b\left(y-\frac{1}{e}\right)+b(1-y) \tag{2}\\
& =b\left(1-\frac{1}{e}\right) \tag{3}
\end{align*}
$$

Algorithm OneSample

How many samples do we need if the distribution is unknown?
Algorithm OneSample
(1) Sample p from seller's distribution;
(2) Post price p and allow the agents to trade.

Theorem

The algorithm OnESAMPLE provides a 2 approximation of the expected maximal welfare.
[Dütting, Fusco, Lazos, Leonardi 2019]

Algorithm SampleQuantile

The SampleQuantile Algorithm has parameters $n \geq 0,1 / e>\delta>0$:
(1) Sample $z \in[1 / e, 1]$ with CDF $\ln (e \cdot x)$.
(2) Draw n samples from G.
(3) Sort the samples in increasing order and choose the $\left(z-\frac{\delta}{2 e}\right) \cdot n$-th one. Call that sample p.
(9) Post price p and allow the agents to trade.

Theorem

For every $\varepsilon \in\left(0, \frac{4}{e}\right)$, given $n=\frac{16 e^{2}}{\varepsilon^{2}} \log \left(\frac{4}{\varepsilon}\right)$ samples, SAMPLEQUANTILE provides an $\left(1-\frac{1}{e}-\varepsilon\right)$ approximation of the optimal expected social welfare
[Dütting, Fusco, Lazos, Leonardi 2019]

Outline

(1) Part I: Mechanism Design in Two-sided Markets
(2) Part II: Bilateral Trade
(3) Part III: Two-sided Auctions

- Two-sided Double Auctions
- Two-sided Combinatorial Auctions
(c) Conclusions

Sequential Posted Price Mechanisms

Definition

Sequential posted price (SPP) mechanisms offer one take-it-or-leave-it price to each buyer according to some order until all the items are sold.

Why do we study SPP mechanisms?

- Very popular mechanisms in practice
- Conceptually simple.
- Not direct revelation mechanisms
- Buyers have obvious dominant strategies
- They are easy to analyze
- Seemingly needed for DSIC, BB double auction.

Drawback: Require prior information about buyer and seller valuations

One-sided SPP mechanisms

- There is an auctioneer with k identical items to sell.
- There are n buyers. They want no more than 1 item.
- For buyer i, valuation v_{i} is drawn from a finite distribution $F_{i} \in \mathbb{R}_{\geq 0}$. How well can SPP mechanisms approximate SW and revenue?

For social welfare the optimal mechanism is VCG

For revenue the optimal mechanism is Myerson

SPP Mechanism [Chawla et al. (2010)]

- For buyer i, let $q_{i}:=\operatorname{Pr}[$ Optimal mechanism gives item to buyer $i]$.
- Let \bar{p}_{i} be such that $\operatorname{Pr}_{v_{i} \sim F_{i}}\left[v_{i}>\bar{p}_{i}\right]=q_{i}$.
- The SPP with prices $\bar{p}=\left(\bar{p}_{1}, \ldots, \bar{p}_{n}\right)$, offered in non-increasing order, 2-approximates revenue or social welfare of optimal mechanism.

Adapting SPP Mechanisms for Two-Sided Markets (1/2)

SPP mechanisms are adapted to two-sided markets:
(1) Decide on an order σ of the buyers.
(2) Decide on an order λ of the sellers.
(3) Decide on prices $p_{i j}$ for all $i \in[n], j \in[k]$.
(9) Iteratively offer the price $p_{i j}$ to the next buyer-seller pair (i, j) according to σ and λ.

- If both accept, let them trade at price $p_{i j}$. Allocate an item to i.

Deallocate an item from j. Charge $p_{i j}$ to i and $-p_{i j}$ to j.
Move to the next seller of λ. Move to the next buyer of σ.

- If seller rejects, move to the next seller in λ.
- If buyer rejects, move to the next buyer in σ.

Adapting SPP Mechanisms for Two-Sided Markets (2/2)

Things to note about two-sided SPP mechanisms:

- Inherently BB.
- Behaving "truthfully" is not always a dominant strategy. However:

Lemma

If prices only depend on the buyer, and not on the seller (i.e., $p_{i j}=p_{i j^{\prime}}$ for all $\left.i \in[n], j, j^{\prime} \in[k]\right)$ and are posted in a non-increasing order, then "truthfulness" is a dominant strategy.

Approximation result for double auctions

Theorem

There exists a BB double auction with a dominant strategy that 6 -approximates the expected optimal social welfare (even with an additional matroid constraint on the set of buyers that trade).
[Colini-Baldeschi, de Keijzer, Goldberg, Leonardi, Roughgarden, and Turchetta, 2016]

Outline of a simpler mechanism

How this mechanism works:

- For $i \in[n]$, let \bar{p}_{i} denote the price from the single-sided mechanism.
- Let σ denote the order of the buyers by decreasing \bar{p}_{i} (also according to Chawla et al. (2010)).
- Let λ be a uniform random ordering of the sellers.
- Set $p_{i j}=p_{i}=\max \left\{\bar{p}_{i}, m_{(k / 2)}\right\}$ where $m_{(k / 2)}$ is the median of the sellers' median valuations.

Analysis of the mechanism (1/2)

- Let at most $k / 4$ pairs trade.
- This leaves $3 k / 4$ sellers with their item.
- The sellers prepared to trade are the sellers with the lowest valuations.
- So: $(4 / 3) \mathbf{A L G}_{s} \geq \mathbf{O P T}_{s}$.

Analysis of the mechanism $(2 / 2)$

Now the buyers' side.

- By charging at least $m_{(k / 2)}$, we expect at least half of the sellers are prepared to trade.
- This implies: with probability at least $1 / 2$, at least $k / 4$ sellers are prepared to trade.
- In case $p_{i}=\bar{p}_{i}$ for all buyers in σ. We get
$\mathbf{A L G}_{b} \geq(1 / 2)(1 / 4)(1 / 2) \mathbf{O P T}_{b}$.
- In the case $p_{i}=m_{(k / 2)}$ for a subset of the buyers, some social welfare on the buyers' side may be lost.
- In that case we show that there are corresponding sellers with a higher valuation.
- $(4 / 3) \mathbf{A L G}_{s}+16 \mathbf{A L G}_{b} \geq \mathbf{O P T}_{b}$

Together:
$16 \mathbf{A L G} \geq(4 / 3) \mathbf{A L G}_{s}+(4 / 3) \mathbf{A L G}_{s}+16 \mathbf{A L G}_{b} \geq \mathbf{O P T}_{b}+\mathbf{O P T} s=\mathbf{O P T}$

Outline

(1) Part I: Mechanism Design in Two-sided Markets
(2) Part II: Bilateral Trade
(3) Part III: Two-sided Auctions

- Two-sided Double Auctions
- Two-sided Combinatorial Auctions
(c) Conclusions

Two-sided combinatorial auctions

- Every v_{i} and every w_{j} map from $2^{[k]}$ to $\mathbb{R}_{\geq 0}$
- We will consider probability distributions over the following classes of valuation functions:
- v is additive iff $v(S)=\sum_{j \in S} \alpha_{j} v(\{j\})$ for all $S \subseteq[k]$ for some real numbers α_{j}.
- v is fractionally subadditive (or XOS) if and only if there exists a collection of additive functions a_{1}, \ldots, a_{d} such that for every bundle $S \subseteq[k]$ it holds that $v(S)=\max _{i \in[d]} a_{i}(S)$
- Fractionally subadditive (or XOS) generalizes submodular functions

The mechanism for two-sided combinatorial auctions

- For each item $j \in[k]$, let $S W_{j}^{B}(\boldsymbol{v})$ its expected contribution to the social welfare.
- Set $p_{j}:=\frac{1}{2} \mathbb{E}_{\boldsymbol{v}}\left[S W_{j}^{B}(\boldsymbol{v})\right]$.
- For all $j \in[k]$:
(1) Set $q_{j}:=1 /\left(2 \operatorname{Pr}\left[w_{j} \leq p_{j}\right]\right)$.
(2) With probability q_{j}, offer payment p_{j} in exchange for her item. Otherwise, skip this seller.
(3) If j accepts the offer, set $\Lambda_{1}:=\Lambda_{1} \cup\{j\}$.
- For all $i \in[n]$:
(1) Let $D\left(v_{i}, \boldsymbol{p}, \Lambda_{i}\right)$ be the demand set of buyer i at price p_{j}.
(2) Buyer i chooses a bundle $B_{i} \in D\left(v_{i}, \boldsymbol{p}, \Lambda_{i}\right)$.
(3) Allocate the accepted items to buyer i
(c) $\Lambda_{i+1}:=\Lambda_{i} \backslash B_{i}$.

Results

- A 6-approximate DSIC mechanism for buyers with XOS-valuations and sellers with one item at their disposal (i.e., unit-supply sellers);
- a 6-approximate BIC mechanism for buyers with XOS-valuations and non-unit supply sellers with additive valuations;
- a 6-approximate DSIC mechanism for buyers with additive valuations and sellers with additive valuations.
[Colini-Baldeschi, de Keijzer, Goldberg, Leonardi, Roughgarden, Turchetta, 2017]

Outline

(1) Part I: Mechanism Design in Two-sided Markets
(2) Part II: Bilateral Trade
(3) Part III: Two-sided Auctions
((Conclusions

Conclusions on Two-sided Market Design

- Algorithmic mechanism design in two-sided markets finds many relevant applications to digital markets
- Simple mechanisms achieve good efficiency while obeying the IR, IC, BB requirements
- Many open problems and applications to digital markets

Conclusions of the first part.

- Economic decisions are taken more and more often by algorithms
- There are several barriers to the reach of good equilibria between agents:
- computational complexity
- coordination between agents
- selfish behaviour
- In the last two decades Economics and Computer Science have made huge progresses in modelling and quantifying these phenomena

Conclusions

Many topics have not been touched in this talk:

- Repeated games
- Mechanism design for social good
- Social choice and voting
- Behavioural cues, e.g., altruistic or myopic behaviour
- Complex market structures
- Many applications to the modelling of social systems and biological evolution

Coming next

- II. Algorithms for Online Labour marketplaces

[^0]: Sold to the purple gentleman for $200 \$$

