
Frontiers of Machine Learning

John Shawe-Taylor

Department of Computer Science
University College London

Data Science Summer School 2019
Pisa, September 2019

Shawe-Taylor Frontiers of ML

Aims:

The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

What is Pattern Analysis?

Example of linear pattern functions

Non-linearity though the kernel approach

Approaches to deeper learning and complex applications

Shawe-Taylor Frontiers of ML

Aims:

The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

What is Pattern Analysis?

Example of linear pattern functions

Non-linearity though the kernel approach

Approaches to deeper learning and complex applications

Shawe-Taylor Frontiers of ML

Aims:

The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

What is Pattern Analysis?

Example of linear pattern functions

Non-linearity though the kernel approach

Approaches to deeper learning and complex applications

Shawe-Taylor Frontiers of ML

Aims:

The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

What is Pattern Analysis?

Example of linear pattern functions

Non-linearity though the kernel approach

Approaches to deeper learning and complex applications

Shawe-Taylor Frontiers of ML

Aims:

The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

What is Pattern Analysis?

Example of linear pattern functions

Non-linearity though the kernel approach

Approaches to deeper learning and complex applications

Shawe-Taylor Frontiers of ML

Pattern Analysis

Data can exhibit regularities that may not be immediately
apparent

exact patterns – eg motions of planets
complex patterns – eg genes in DNA
probabilistic patterns – eg market research

Detecting patterns makes it possible to understand and/or
exploit the regularities to make predictions

Pattern analysis is the study of automatic detection of
patterns in data

Shawe-Taylor Frontiers of ML

Pattern Analysis

Data can exhibit regularities that may not be immediately
apparent

exact patterns – eg motions of planets
complex patterns – eg genes in DNA
probabilistic patterns – eg market research

Detecting patterns makes it possible to understand and/or
exploit the regularities to make predictions

Pattern analysis is the study of automatic detection of
patterns in data

Shawe-Taylor Frontiers of ML

Pattern Analysis

Data can exhibit regularities that may not be immediately
apparent

exact patterns – eg motions of planets
complex patterns – eg genes in DNA
probabilistic patterns – eg market research

Detecting patterns makes it possible to understand and/or
exploit the regularities to make predictions

Pattern analysis is the study of automatic detection of
patterns in data

Shawe-Taylor Frontiers of ML

Defining patterns

Exact patterns: non-trivial function f such that

f (x) = 0 for all x

Approximate patterns: f such that

f (x) ≈ 0 for all x

Statistical patterns: f such that

Ex∼D[f (x)] ≈ 0

where D is the distribution generating x.

Shawe-Taylor Frontiers of ML

Defining patterns

Exact patterns: non-trivial function f such that

f (x) = 0 for all x

Approximate patterns: f such that

f (x) ≈ 0 for all x

Statistical patterns: f such that

Ex∼D[f (x)] ≈ 0

where D is the distribution generating x.

Shawe-Taylor Frontiers of ML

Defining patterns

Exact patterns: non-trivial function f such that

f (x) = 0 for all x

Approximate patterns: f such that

f (x) ≈ 0 for all x

Statistical patterns: f such that

Ex∼D[f (x)] ≈ 0

where D is the distribution generating x.

Shawe-Taylor Frontiers of ML

Pattern analysis algorithms

We would like algorithms to be:

Computationally efficient – running time polynomial in the
size of the data – often needs to be of a low degree

Robust – able to handle noisy data, eg examples misclassified,
noisy sensors or outputs only to a certain accuracy

Statistical stability – able to distinguish between chance
patterns and those characteristic of the underlying source of
the data

Shawe-Taylor Frontiers of ML

Pattern analysis algorithms

We would like algorithms to be:

Computationally efficient – running time polynomial in the
size of the data – often needs to be of a low degree

Robust – able to handle noisy data, eg examples misclassified,
noisy sensors or outputs only to a certain accuracy

Statistical stability – able to distinguish between chance
patterns and those characteristic of the underlying source of
the data

Shawe-Taylor Frontiers of ML

Pattern analysis algorithms

We would like algorithms to be:

Computationally efficient – running time polynomial in the
size of the data – often needs to be of a low degree

Robust – able to handle noisy data, eg examples misclassified,
noisy sensors or outputs only to a certain accuracy

Statistical stability – able to distinguish between chance
patterns and those characteristic of the underlying source of
the data

Shawe-Taylor Frontiers of ML

Brief Historical Perspective

Machine learning using neural like structures first considered
seriously in 1960s with such systems as the Perceptron

Linear patterns
Simple learning algorithm
shown to be limited in complexity

Resurrection of ideas in more powerful multi-layer perceptrons
in 1980s

networks of perceptrons with continuous activation functions
very slow learning
no statistical analysis

Shawe-Taylor Frontiers of ML

Brief Historical Perspective

Machine learning using neural like structures first considered
seriously in 1960s with such systems as the Perceptron

Linear patterns
Simple learning algorithm
shown to be limited in complexity

Resurrection of ideas in more powerful multi-layer perceptrons
in 1980s

networks of perceptrons with continuous activation functions
very slow learning
no statistical analysis

Shawe-Taylor Frontiers of ML

Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines

Linear functions but in high dimensional spaces equivalent to
non-linear functions in the input space

Statistical analysis showing large margin can overcome curse
of dimensionality

Extensions rapidly introduced for many other tasks other than
classification

Shawe-Taylor Frontiers of ML

Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines

Linear functions but in high dimensional spaces equivalent to
non-linear functions in the input space

Statistical analysis showing large margin can overcome curse
of dimensionality

Extensions rapidly introduced for many other tasks other than
classification

Shawe-Taylor Frontiers of ML

Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines

Linear functions but in high dimensional spaces equivalent to
non-linear functions in the input space

Statistical analysis showing large margin can overcome curse
of dimensionality

Extensions rapidly introduced for many other tasks other than
classification

Shawe-Taylor Frontiers of ML

Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines

Linear functions but in high dimensional spaces equivalent to
non-linear functions in the input space

Statistical analysis showing large margin can overcome curse
of dimensionality

Extensions rapidly introduced for many other tasks other than
classification

Shawe-Taylor Frontiers of ML

Kernel methods approach

Data embedded into a Euclidean feature space

Linear relations are sought among the images of the data

Algorithms implemented so that only require inner products
between vectors

Embedding designed so that inner products of images of two
points can be computed directly by an efficient ‘short-cut’
known as the kernel.

Shawe-Taylor Frontiers of ML

Kernel methods approach

Data embedded into a Euclidean feature space

Linear relations are sought among the images of the data

Algorithms implemented so that only require inner products
between vectors

Embedding designed so that inner products of images of two
points can be computed directly by an efficient ‘short-cut’
known as the kernel.

Shawe-Taylor Frontiers of ML

Kernel methods approach

Data embedded into a Euclidean feature space

Linear relations are sought among the images of the data

Algorithms implemented so that only require inner products
between vectors

Embedding designed so that inner products of images of two
points can be computed directly by an efficient ‘short-cut’
known as the kernel.

Shawe-Taylor Frontiers of ML

Kernel methods approach

Data embedded into a Euclidean feature space

Linear relations are sought among the images of the data

Algorithms implemented so that only require inner products
between vectors

Embedding designed so that inner products of images of two
points can be computed directly by an efficient ‘short-cut’
known as the kernel.

Shawe-Taylor Frontiers of ML

Worked example: Ridge Regression

Consider the problem of finding a homogeneous real-valued linear
function

g(x) = 〈w, x〉 = x′w =
n
∑

i=1

wixi ,

that best interpolates a given training set

S = {(x1, y1), . . . , (xm, ym)}

of points xi from X ⊆ R
n with corresponding labels yi in Y ⊆ R.

Shawe-Taylor Frontiers of ML

Possible pattern function

Measures discrepancy between function output and correct
output – squared to ensure always positive:

fg ((x, y)) = (g(x) − y)2

Note that the pattern function fg is not itself a linear
function, but a simple functional of the linear functions g .

We introduce notation: matrix X has rows the m examples of
S . Hence we can write

ξ = y −Xw

for the vector of differences between g(xi) and yi .

Shawe-Taylor Frontiers of ML

Possible pattern function

Measures discrepancy between function output and correct
output – squared to ensure always positive:

fg ((x, y)) = (g(x) − y)2

Note that the pattern function fg is not itself a linear
function, but a simple functional of the linear functions g .

We introduce notation: matrix X has rows the m examples of
S . Hence we can write

ξ = y −Xw

for the vector of differences between g(xi) and yi .

Shawe-Taylor Frontiers of ML

Optimising the choice of g

Need to ensure flexibility of g is controlled – controlling the norm
of w proves effective:

min
w
Lλ(w,S) = min

w
λ‖w‖2 + ‖ξ‖2,

where we can compute

‖ξ‖2 = 〈y − Xw, y − Xw〉
= y′y − 2w′X′y + w′X′Xw

Setting derivative of Lλ(w,S) equal to 0 gives

X′Xw + λw =
(

X′X+ λIn
)

w = X′y

Shawe-Taylor Frontiers of ML

Primal solution

We get the primal solution weight vector:

w =
(

X′X+ λIn
)−1

X′y

and regression function

g(x) = x′w = x′
(

X′X+ λIn
)−1

X′y

Shawe-Taylor Frontiers of ML

Dual solution

A dual solution should involve only computation of inner products
– this is achieved by expressing the weight vector as a linear
combination of the training examples:

X′Xw + λw = X′y implies

w =
1

λ

(

X′y − X′Xw
)

= X′ 1

λ
(y − Xw) = X′α,

where

α =
1

λ
(y − Xw) (1)

or equivalently

w =

m
∑

i=1

αixi

Shawe-Taylor Frontiers of ML

Dual solution

Substituting w = X′α into equation (1) we obtain:

λα = y − XX′α

implying
(

XX′ + λIm
)

α = y

This gives the dual solution:

α =
(

XX′ + λIm
)−1

y

and regression function

g(x) = x′w = x′X′α =

m
∑

i=1

αi 〈x, xi 〉

Shawe-Taylor Frontiers of ML

Key ingredients of dual solution

Step 1: Compute
α = (K+ λIm)

−1 y

where K = XX′ that is Kij = 〈xi , xj 〉
Step 2: Evaluate on new point x by

g(x) =

m
∑

i=1

αi〈x, xi 〉

Important observation: Both steps only involve inner products
between datapoints

Shawe-Taylor Frontiers of ML

Key ingredients of dual solution

Step 1: Compute
α = (K+ λIm)

−1 y

where K = XX′ that is Kij = 〈xi , xj 〉
Step 2: Evaluate on new point x by

g(x) =

m
∑

i=1

αi〈x, xi 〉

Important observation: Both steps only involve inner products
between datapoints

Shawe-Taylor Frontiers of ML

Key ingredients of dual solution

Step 1: Compute
α = (K+ λIm)

−1 y

where K = XX′ that is Kij = 〈xi , xj 〉
Step 2: Evaluate on new point x by

g(x) =

m
∑

i=1

αi〈x, xi 〉

Important observation: Both steps only involve inner products
between datapoints

Shawe-Taylor Frontiers of ML

Applying the ‘kernel trick’

Since the computation only involves inner products, we can
substitute for all occurrences of 〈·, ·〉 a kernel function κ that
computes:

κ(x, z) = 〈φ(x), φ(z)〉
and we obtain an algorithm for ridge regression in the feature
space F defined by the mapping

φ : x 7−→ φ(x) ∈ F

Note if φ is the identity we remain linear in the input space.

Shawe-Taylor Frontiers of ML

A simple kernel example

The simplest non-trivial kernel function is the quadratic kernel:

κ(x, z) = 〈x, z〉2

involving just one extra operation. But surprisingly this kernel
function now corresponds to a complex feature mapping:

κ(x, z) = (x′z)2 = z′(xx′)z

= 〈vec(zz′), vec(xx′)〉

where vec(A) stacks the columns of the matrix A on top of each
other. Hence, κ corresponds to the feature mapping

φ : x 7−→ vec(xx′)

Shawe-Taylor Frontiers of ML

Implications of the kernel trick

Consider for example computing a regression function over
1000 images represented by pixel vectors – say
32× 32 = 1024.

By using the quadratic kernel we implement the regression
function in a 1, 000, 000 dimensional space

but actually using less computation for the learning phase
than we did in the original space.

Shawe-Taylor Frontiers of ML

Implications of the kernel trick

Consider for example computing a regression function over
1000 images represented by pixel vectors – say
32× 32 = 1024.

By using the quadratic kernel we implement the regression
function in a 1, 000, 000 dimensional space

but actually using less computation for the learning phase
than we did in the original space.

Shawe-Taylor Frontiers of ML

Implications of the kernel trick

Consider for example computing a regression function over
1000 images represented by pixel vectors – say
32× 32 = 1024.

By using the quadratic kernel we implement the regression
function in a 1, 000, 000 dimensional space

but actually using less computation for the learning phase
than we did in the original space.

Shawe-Taylor Frontiers of ML

Implications of kernel algorithms

Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.

This is equivalent to performing non-linear regression in the
original input space: for example quadratic kernel leads to
solution of the form

g(x) =
m
∑

i=1

αi 〈xi , x〉2

that is a quadratic polynomial function of the components of
the input vector x.

Using these high-dimensional spaces must surely come with a
health warning, what about the curse of dimensionality?

Shawe-Taylor Frontiers of ML

Implications of kernel algorithms

Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.

This is equivalent to performing non-linear regression in the
original input space: for example quadratic kernel leads to
solution of the form

g(x) =
m
∑

i=1

αi 〈xi , x〉2

that is a quadratic polynomial function of the components of
the input vector x.

Using these high-dimensional spaces must surely come with a
health warning, what about the curse of dimensionality?

Shawe-Taylor Frontiers of ML

Implications of kernel algorithms

Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.

This is equivalent to performing non-linear regression in the
original input space: for example quadratic kernel leads to
solution of the form

g(x) =
m
∑

i=1

αi 〈xi , x〉2

that is a quadratic polynomial function of the components of
the input vector x.

Using these high-dimensional spaces must surely come with a
health warning, what about the curse of dimensionality?

Shawe-Taylor Frontiers of ML

Theories of learning

Basic approach of SLT is to view learning from a statistical
viewpoint.

Aim of any theory is to model real/ artificial phenomena so
that we can better understand/ predict/ exploit them.

SLT is just one approach to understanding/ predicting/
exploiting learning systems, others include Bayesian inference,
inductive inference, statistical physics, traditional statistical
analysis.

Shawe-Taylor Frontiers of ML

Theories of learning

Basic approach of SLT is to view learning from a statistical
viewpoint.

Aim of any theory is to model real/ artificial phenomena so
that we can better understand/ predict/ exploit them.

SLT is just one approach to understanding/ predicting/
exploiting learning systems, others include Bayesian inference,
inductive inference, statistical physics, traditional statistical
analysis.

Shawe-Taylor Frontiers of ML

Theories of learning

Basic approach of SLT is to view learning from a statistical
viewpoint.

Aim of any theory is to model real/ artificial phenomena so
that we can better understand/ predict/ exploit them.

SLT is just one approach to understanding/ predicting/
exploiting learning systems, others include Bayesian inference,
inductive inference, statistical physics, traditional statistical
analysis.

Shawe-Taylor Frontiers of ML

Theories of learning cont.

Each theory makes assumptions about the phenomenon of
learning and based on these derives predictions of behaviour
as well as algorithms that aim at optimising the predictions.

Each theory has strengths and weaknesses – the better it
captures the key details of real world system, the better the
theory and the better the chances of it making accurate
predictions and driving good algorithms.

Shawe-Taylor Frontiers of ML

Theories of learning cont.

Each theory makes assumptions about the phenomenon of
learning and based on these derives predictions of behaviour
as well as algorithms that aim at optimising the predictions.

Each theory has strengths and weaknesses – the better it
captures the key details of real world system, the better the
theory and the better the chances of it making accurate
predictions and driving good algorithms.

Shawe-Taylor Frontiers of ML

General statistical considerations

Statistical models (not including Bayesian) begin with an
assumption that the data is generated by an underlying
distribution D typically not given explicitly to the learner.

If we are trying to classify cancerous tissue from healthy
tissue, there are two distributions, one for cancerous cells and
one for healthy ones.

Shawe-Taylor Frontiers of ML

General statistical considerations

Statistical models (not including Bayesian) begin with an
assumption that the data is generated by an underlying
distribution D typically not given explicitly to the learner.

If we are trying to classify cancerous tissue from healthy
tissue, there are two distributions, one for cancerous cells and
one for healthy ones.

Shawe-Taylor Frontiers of ML

General statistical considerations cont.

Usually the distribution subsumes the processes of the
natural/artificial world that we are studying.

Rather than accessing the distribution directly, statistical
learning typically assumes that we are given a ‘training
sample’ or ‘training set’

S = {(x1, y1), . . . , (xm, ym)}

generated identically and independently (i.i.d.) according to
the distribution D.

Shawe-Taylor Frontiers of ML

General statistical considerations cont.

Usually the distribution subsumes the processes of the
natural/artificial world that we are studying.

Rather than accessing the distribution directly, statistical
learning typically assumes that we are given a ‘training
sample’ or ‘training set’

S = {(x1, y1), . . . , (xm, ym)}

generated identically and independently (i.i.d.) according to
the distribution D.

Shawe-Taylor Frontiers of ML

Generalisation of a learner

Assume that we have a learning algorithm A that chooses a
function AF (S) from a function space F in response to the
training set S .

From a statistical point of view the quantity of interest is the
random variable:

ǫ(S ,A,F) = E(x,y)∼D [ℓ(AF (S), x, y)] ,

where ℓ is a ‘loss’ function that measures the discrepancy
between AF (S)(x) and y .

Shawe-Taylor Frontiers of ML

Generalisation of a learner

Assume that we have a learning algorithm A that chooses a
function AF (S) from a function space F in response to the
training set S .

From a statistical point of view the quantity of interest is the
random variable:

ǫ(S ,A,F) = E(x,y)∼D [ℓ(AF (S), x, y)] ,

where ℓ is a ‘loss’ function that measures the discrepancy
between AF (S)(x) and y .

Shawe-Taylor Frontiers of ML

Generalisation of a learner

For example, in the case of classification ℓ is 1 if the two
disagree and 0 otherwise, while for regression it could be the
square of the difference between AF (S)(x) and y .

We refer to the random variable ǫ(S ,A,F) as the
generalisation of the learner.

Shawe-Taylor Frontiers of ML

Generalisation of a learner

For example, in the case of classification ℓ is 1 if the two
disagree and 0 otherwise, while for regression it could be the
square of the difference between AF (S)(x) and y .

We refer to the random variable ǫ(S ,A,F) as the
generalisation of the learner.

Shawe-Taylor Frontiers of ML

Example of Generalisation I

We consider the Breast Cancer dataset from the UCI
repository.

Use the simple Parzen window classifier described by the
weight vector

w+ − w−

where w+ is the average of the positive training examples
and w− is average of negative training examples. Threshold is
set so hyperplane bisects the line joining these two points.

Shawe-Taylor Frontiers of ML

Example of Generalisation I

We consider the Breast Cancer dataset from the UCI
repository.

Use the simple Parzen window classifier described by the
weight vector

w+ − w−

where w+ is the average of the positive training examples
and w− is average of negative training examples. Threshold is
set so hyperplane bisects the line joining these two points.

Shawe-Taylor Frontiers of ML

Example of Generalisation II

Given a size m of the training set, by repeatedly drawing
random training sets S we estimate the distribution of

ǫ(S ,A,F) = E(x,y)∼D [ℓ(AF (S), x, y)] ,

by using the test set error as a proxy for the true
generalisation.

We plot the histogram and the average of the distribution for
various sizes of training set – initially the whole dataset gives
a single value if we use training and test as all the examples,
but then we plot for training set sizes:

342, 273, 205, 137, 68, 34, 27, 20, 14, 7.

Shawe-Taylor Frontiers of ML

Example of Generalisation II

Given a size m of the training set, by repeatedly drawing
random training sets S we estimate the distribution of

ǫ(S ,A,F) = E(x,y)∼D [ℓ(AF (S), x, y)] ,

by using the test set error as a proxy for the true
generalisation.

We plot the histogram and the average of the distribution for
various sizes of training set – initially the whole dataset gives
a single value if we use training and test as all the examples,
but then we plot for training set sizes:

342, 273, 205, 137, 68, 34, 27, 20, 14, 7.

Shawe-Taylor Frontiers of ML

Example of Generalisation III

Since the expected classifier is in all cases the same:

E [AF (S)] = ES

[

w+
S − w−

S

]

= ES

[

w+
S

]

− ES

[

w−
S

]

= Ey=+1 [x]− Ey=−1 [x] ,

we do not expect large differences in the average of the
distribution, though the non-linearity of the loss function
means they won’t be the same exactly.

Shawe-Taylor Frontiers of ML

Error distribution: full dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 342

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 273

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 205

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Shawe-Taylor Frontiers of ML

Expected versus confident bounds

For a finite sample the generalisation ǫ(S ,A,F) has a
distribution depending on the algorithm, function class and
sample size m.

Traditional statistics has concentrated on the mean of this
distribution – but this quantity can be misleading, eg for low
fold cross-validation.

Shawe-Taylor Frontiers of ML

Expected versus confident bounds

For a finite sample the generalisation ǫ(S ,A,F) has a
distribution depending on the algorithm, function class and
sample size m.

Traditional statistics has concentrated on the mean of this
distribution – but this quantity can be misleading, eg for low
fold cross-validation.

Shawe-Taylor Frontiers of ML

Expected versus confident bounds cont.

Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.

This looks like a statistical test – significant at a 1%
confidence means that the chances of the conclusion not
being true are less than 1% over random samples of that size.

This is also the source of the acronym PAC: probably
approximately correct, the ‘confidence’ parameter δ is the
probability that we have been misled by the training set.

Shawe-Taylor Frontiers of ML

Expected versus confident bounds cont.

Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.

This looks like a statistical test – significant at a 1%
confidence means that the chances of the conclusion not
being true are less than 1% over random samples of that size.

This is also the source of the acronym PAC: probably
approximately correct, the ‘confidence’ parameter δ is the
probability that we have been misled by the training set.

Shawe-Taylor Frontiers of ML

Expected versus confident bounds cont.

Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.

This looks like a statistical test – significant at a 1%
confidence means that the chances of the conclusion not
being true are less than 1% over random samples of that size.

This is also the source of the acronym PAC: probably
approximately correct, the ‘confidence’ parameter δ is the
probability that we have been misled by the training set.

Shawe-Taylor Frontiers of ML

Concentration inequalities

Statistical Learning is concerned with the reliability or stability
of inferences made from a random sample.

Random variables with this property have been a subject of
ongoing interest to probabilists and statisticians.

Shawe-Taylor Frontiers of ML

Concentration inequalities

Statistical Learning is concerned with the reliability or stability
of inferences made from a random sample.

Random variables with this property have been a subject of
ongoing interest to probabilists and statisticians.

Shawe-Taylor Frontiers of ML

Concentration inequalities cont.

As an example consider the mean of a sample of m
1-dimensional random variables X1, . . . ,Xm:

Sm =
1

m

m
∑

i=1

Xi .

Hoeffding’s inequality states that if Xi ∈ [ai , bi]

P{|Sm − E[Sm]| ≥ ǫ} ≤ 2 exp

(

− 2m2ǫ2
∑m

i=1(bi − ai)2

)

Note how the probability falls off exponentially with the
distance from the mean and with the number of variables.

Shawe-Taylor Frontiers of ML

Concentration inequalities cont.

As an example consider the mean of a sample of m
1-dimensional random variables X1, . . . ,Xm:

Sm =
1

m

m
∑

i=1

Xi .

Hoeffding’s inequality states that if Xi ∈ [ai , bi]

P{|Sm − E[Sm]| ≥ ǫ} ≤ 2 exp

(

− 2m2ǫ2
∑m

i=1(bi − ai)2

)

Note how the probability falls off exponentially with the
distance from the mean and with the number of variables.

Shawe-Taylor Frontiers of ML

Concentration for SLT

We are now going to look at deriving SLT results from
concentration inequalities.

Perhaps the best known form is due to McDiarmid (although
he was actually representing previously derived results):

Shawe-Taylor Frontiers of ML

Concentration for SLT

We are now going to look at deriving SLT results from
concentration inequalities.

Perhaps the best known form is due to McDiarmid (although
he was actually representing previously derived results):

Shawe-Taylor Frontiers of ML

McDiarmid’s inequality

Theorem

Let X1, . . . ,Xn be independent random variables taking values in a
set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f (x1, . . . , xn)− f (x1, . . . , x̂i , xi+1, . . . , xn)| ≤ ci ,

for 1 ≤ i ≤ n. Then for all ǫ > 0,

P {f (X1, . . . ,Xn)− Ef (X1, . . . ,Xn) ≥ ǫ} ≤ exp

(−2ǫ2
∑n

i=1 c
2
i

)

Hoeffding is a special case when f (x1, . . . , xn) = Sn

Shawe-Taylor Frontiers of ML

McDiarmid’s inequality

Theorem

Let X1, . . . ,Xn be independent random variables taking values in a
set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f (x1, . . . , xn)− f (x1, . . . , x̂i , xi+1, . . . , xn)| ≤ ci ,

for 1 ≤ i ≤ n. Then for all ǫ > 0,

P {f (X1, . . . ,Xn)− Ef (X1, . . . ,Xn) ≥ ǫ} ≤ exp

(−2ǫ2
∑n

i=1 c
2
i

)

Hoeffding is a special case when f (x1, . . . , xn) = Sn

Shawe-Taylor Frontiers of ML

Using McDiarmid

By setting the right hand side equal to δ, we can always invert
McDiarmid to get a high confidence bound: with probability
at least 1− δ

f (X1, . . . ,Xn) < Ef (X1, . . . ,Xn) +

√

∑n
i=1 c

2
i

2
log

1

δ

If ci = c/n for each i this reduces to

f (X1, . . . ,Xn) < Ef (X1, . . . ,Xn) +

√

c2

2n
log

1

δ

Shawe-Taylor Frontiers of ML

Using McDiarmid

By setting the right hand side equal to δ, we can always invert
McDiarmid to get a high confidence bound: with probability
at least 1− δ

f (X1, . . . ,Xn) < Ef (X1, . . . ,Xn) +

√

∑n
i=1 c

2
i

2
log

1

δ

If ci = c/n for each i this reduces to

f (X1, . . . ,Xn) < Ef (X1, . . . ,Xn) +

√

c2

2n
log

1

δ

Shawe-Taylor Frontiers of ML

Rademacher complexity

The Rademacher complexity provides a way of measuring the
complexity of a function class F by testing how well on average it
can align with random noise:

Rm(F) = ESσ

[

sup
f ∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σi f (zi)

∣

∣

∣

∣

∣

]

.

is known as the Rademacher complexity of the function class F
where σi , i = 1,m are uniformly random +1,−1 valued variables.

Shawe-Taylor Frontiers of ML

Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1− δ over random samples S of size m, every f ∈ F satisfies

E [f (z)] ≤ Ê [f (z)] + Rm(F) +
√

ln(1/δ)

2m

Note that Rademacher complexity gives the expected value of
the maximal correlation with random noise – a very natural
measure of capacity.

Note that the Rademacher complexity is distribution
dependent since it involves an expectation over the choice of
sample – this might seem hard to compute.

Shawe-Taylor Frontiers of ML

Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1− δ over random samples S of size m, every f ∈ F satisfies

E [f (z)] ≤ Ê [f (z)] + Rm(F) +
√

ln(1/δ)

2m

Note that Rademacher complexity gives the expected value of
the maximal correlation with random noise – a very natural
measure of capacity.

Note that the Rademacher complexity is distribution
dependent since it involves an expectation over the choice of
sample – this might seem hard to compute.

Shawe-Taylor Frontiers of ML

Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1− δ over random samples S of size m, every f ∈ F satisfies

E [f (z)] ≤ Ê [f (z)] + Rm(F) +
√

ln(1/δ)

2m

Note that Rademacher complexity gives the expected value of
the maximal correlation with random noise – a very natural
measure of capacity.

Note that the Rademacher complexity is distribution
dependent since it involves an expectation over the choice of
sample – this might seem hard to compute.

Shawe-Taylor Frontiers of ML

Empirical Rademacher theorem

Since the empirical Rademacher complexity

R̂m(F) = Eσ

[

sup
f ∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σi f (zi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z1, . . . , zm

]

is concentrated, we can make a further application of
McDiarmid to obtain with probability at least 1− δ

ED [f (z)] ≤ Ê [f (z)] + R̂m(F) + 3

√

ln(2/δ)

2m
.

Shawe-Taylor Frontiers of ML

Application to large margin classification

Rademacher complexity comes into its own for analysing
Support Vector Machines as well as Boosting algorithms.

Shawe-Taylor Frontiers of ML

Rademacher complexity for SVMs

The Rademacher complexity of a class of linear functions with
bounded 2-norm:
{

x→
m
∑

i=1

αiκ(xi , x) : α
′Kα ≤ B2

}

⊆

⊆ {x→ 〈w, φ (x)〉 : ‖w‖ ≤ B}
= FB ,

where we assume a kernel defined feature space with

〈φ(x), φ(z)〉 = κ(x, z).

Shawe-Taylor Frontiers of ML

Rademacher complexity of FB

The following derivation gives the result

R̂m(FB) = Eσ

[

sup
f ∈FB

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σi f (xi)

∣

∣

∣

∣

∣

]

= Eσ

[

sup
‖w‖≤B

∣

∣

∣

∣

∣

〈

w,
2

m

m
∑

i=1

σiφ (xi)

〉∣

∣

∣

∣

∣

]

≤ 2B

m
Eσ

[∥

∥

∥

∥

∥

m
∑

i=1

σiφ(xi)

∥

∥

∥

∥

∥

]

=
2B

m
Eσ

〈

m
∑

i=1

σiφ(xi),

m
∑

j=1

σjφ(xj)

〉

1/2

≤ 2B

m

Eσ

m
∑

i ,j=1

σiσjκ(xi , xj)

1/2

=
2B

m

√

√

√

√

m
∑

i=1

κ(xi , xi)

Shawe-Taylor Frontiers of ML

Support Vector Machines (SVM)

SVM seeks linear function in a feature space defined implicitly
via a kernel κ:

κ(x, z) = 〈φ(x), φ(z)〉
that optimises a bound on the generalisation.

The first step is to introduce a loss function which upper
bounds the discrete loss

P(y 6= sgn(g(x))) = E [H(−yg(x))],

where H is the Heaviside function.

Shawe-Taylor Frontiers of ML

Support Vector Machines (SVM)

SVM seeks linear function in a feature space defined implicitly
via a kernel κ:

κ(x, z) = 〈φ(x), φ(z)〉
that optimises a bound on the generalisation.

The first step is to introduce a loss function which upper
bounds the discrete loss

P(y 6= sgn(g(x))) = E [H(−yg(x))],

where H is the Heaviside function.

Shawe-Taylor Frontiers of ML

Margins in SVMs

Critical to the bound will be the margin of the classifier

γ(x, y) = yg(x) = y(〈w, φ(x)〉 + b) :

positive if correctly classified, and measures distance from the
separating hyperplane when the weight vector is normalised.

The margin of a linear function g is

γ(g) = min
i
γ(xi , yi)

though this is frequently increased to allow some ‘margin
errors’.

Shawe-Taylor Frontiers of ML

Margins in SVMs

Critical to the bound will be the margin of the classifier

γ(x, y) = yg(x) = y(〈w, φ(x)〉 + b) :

positive if correctly classified, and measures distance from the
separating hyperplane when the weight vector is normalised.

The margin of a linear function g is

γ(g) = min
i
γ(xi , yi)

though this is frequently increased to allow some ‘margin
errors’.

Shawe-Taylor Frontiers of ML

Margins in SVMs

Shawe-Taylor Frontiers of ML

Applying the Rademacher theorem

Consider the loss function A : R→ [0, 1], given by

A(a) =

1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

By the Rademacher Theorem and since the loss function A
dominates H, we have that

E [H(−yg(x))] ≤ E [A(−yg(x))]
≤ Ê [A(−yg(x))] +

R̂m(A ◦ F) + 3

√

ln(2/δ)

2m
.

Shawe-Taylor Frontiers of ML

Applying the Rademacher theorem

Consider the loss function A : R→ [0, 1], given by

A(a) =

1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

By the Rademacher Theorem and since the loss function A
dominates H, we have that

E [H(−yg(x))] ≤ E [A(−yg(x))]
≤ Ê [A(−yg(x))] +

R̂m(A ◦ F) + 3

√

ln(2/δ)

2m
.

Shawe-Taylor Frontiers of ML

Empirical loss and slack variables

But the function A(−yig(xi)) ≤ ξi/γ, for i = 1, . . . ,m, and
so

E [H(−yg(x))] ≤ 1

mγ

m
∑

i=1

ξi + R̂m(A ◦ F) + 3

√

ln(2/δ)

2m
.

The final missing ingredient to complete the bound is to
bound R̂m(A ◦ F) in terms of R̂m(F).
This can be obtained in terms of the maximal slope of the
function A: R̂m(A ◦ F) ≤ 2

γ R̂m(F).

Shawe-Taylor Frontiers of ML

Empirical loss and slack variables

But the function A(−yig(xi)) ≤ ξi/γ, for i = 1, . . . ,m, and
so

E [H(−yg(x))] ≤ 1

mγ

m
∑

i=1

ξi + R̂m(A ◦ F) + 3

√

ln(2/δ)

2m
.

The final missing ingredient to complete the bound is to
bound R̂m(A ◦ F) in terms of R̂m(F).
This can be obtained in terms of the maximal slope of the
function A: R̂m(A ◦ F) ≤ 2

γ R̂m(F).

Shawe-Taylor Frontiers of ML

Empirical loss and slack variables

But the function A(−yig(xi)) ≤ ξi/γ, for i = 1, . . . ,m, and
so

E [H(−yg(x))] ≤ 1

mγ

m
∑

i=1

ξi + R̂m(A ◦ F) + 3

√

ln(2/δ)

2m
.

The final missing ingredient to complete the bound is to
bound R̂m(A ◦ F) in terms of R̂m(F).
This can be obtained in terms of the maximal slope of the
function A: R̂m(A ◦ F) ≤ 2

γ R̂m(F).

Shawe-Taylor Frontiers of ML

Final SVM bound

Assembling the result we obtain:

P(y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1

mγ

m
∑

i=1

ξi +
4

mγ

√

√

√

√

m
∑

i=1

κ(xi , xi) + 3

√

ln(2/δ)

2m

Note that for the Gaussian kernel this reduces to

P(y 6= sgn(g(x))) ≤ 1

mγ

m
∑

i=1

ξi +
4√
mγ

+ 3

√

ln(2/δ)

2m

Shawe-Taylor Frontiers of ML

Final SVM bound

Assembling the result we obtain:

P(y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1

mγ

m
∑

i=1

ξi +
4

mγ

√

√

√

√

m
∑

i=1

κ(xi , xi) + 3

√

ln(2/δ)

2m

Note that for the Gaussian kernel this reduces to

P(y 6= sgn(g(x))) ≤ 1

mγ

m
∑

i=1

ξi +
4√
mγ

+ 3

√

ln(2/δ)

2m

Shawe-Taylor Frontiers of ML

Applying to 1-norm SVMs

We take the following formulation of the 1-norm SVM to optimise
the bound:

minw,b,γ,ξ −γ + C
∑m

i=1 ξi
subject to yi (〈w, φ (xi)〉+ b) ≥ γ − ξi , ξi ≥ 0,

i = 1, . . . ,m, and ‖w‖2 = 1.

(2)

Note that
ξi = (γ − yig(xi))+ ,

where g(·) = 〈w, φ(·)〉 + b.

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 205

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 137

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 68

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 34

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 27

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 20

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 14

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 7

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Forming the Lagrangian L(w, b, γ, ξ, α, β, λ):

−γ + C
m
∑

i=1

ξi −
m
∑

i=1

αi [yi(〈φ (xi) ,w〉+ b)− γ + ξi]

−
m
∑

i=1

βiξi + λ
(

‖w‖2 − 1
)

with αi ≥ 0 and βi ≥ 0.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Taking derivatives gives:

∂L(w, b, γ, ξ, α, β, λ)

∂w
= 2λw −

m
∑

i=1

yiαiφ (xi) = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂ξi
= C−αi−βi = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂b
=

m
∑

i=1

yiαi = 0,

∂L(w, b, γ, ξ, α, β, λ)

∂γ
= 1−

m
∑

i=1

αi = 0.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

L(α, λ) = − 1

4λ

m
∑

i ,j=1

yiyjαiαjκ (xi , xj)− λ,

which, again optimising with respect to λ, gives

λ∗ =
1

2

m
∑

i ,j=1

yiyjαiαjκ (xi , xj)

1/2

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

equivalent to maximising

L(α) = −
m
∑

i ,j=1

αiαjyiyjκ (xi , xj) ,

subject to the constraints

0 ≤ αi ≤ C ,

m
∑

i=1

αi = 1

m
∑

i=1

yiαi = 0

to give solution
α∗
i , i = 1, . . . ,m

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Kuhn-Tucker conditions:

αi [yi(〈φ (xi) ,w〉+ b)− γ + ξi] = 0

βiξi = 0

These imply:

αi 6= 0 only if

yi (〈φ (xi) ,w〉 + b) = γ − ξi

these correspond to support vectors – their margins are less
than or equal to γ.

ξi 6= 0 only if βi = 0 implying that αi = C , i.e. for
0 < αi < C margin is exactly γ.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

The solution can then be computed as:

choose i , j such that −C < α∗
i yi < 0 < α∗

j yj < C

b∗ = −0.5
(

m
∑

k=1

α∗
kykκ (xk , xi) +

m
∑

k=1

α∗
kykκ (xk , xj)

)

f (·) = sgn

m
∑

j=1

α∗
j yjκ (xj , ·) + b∗

 ;

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

We can compute the margin as follows:

λ∗ =
1

2

m
∑

i ,j=1

yiyjα
∗
i α

∗
j κ (xi , xj)

1/2

γ∗ = (2λ∗)−1

(

m
∑

k=1

α∗
kykκ (xk , xj) + b∗

)

Similarly we can compute

m
∑

i=1

ξi =
−2λ∗ + γ∗

C

if we wish to compute the value of the bound.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Decision boundary and γ margin for 1-norm svm with a gaussian
kernel:

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Have introduced a slightly non-standard version of the SVM
but makes ν-SVM very simple to define.

Consider expressing C = 1/(νm):

implies 0 ≤ αi ≤ 1/(νm)
if ξ > 0 then αi = 1/(νm), but

∑m

i=1 αi = 1 so at most νm
inputs can have this hold.
equally at least νm inputs have αi 6= 0

Hence, ν can be seen as the fraction of ‘support vectors’, a
natural measure of the noise in the data.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Have introduced a slightly non-standard version of the SVM
but makes ν-SVM very simple to define.

Consider expressing C = 1/(νm):

implies 0 ≤ αi ≤ 1/(νm)
if ξ > 0 then αi = 1/(νm), but

∑m

i=1 αi = 1 so at most νm
inputs can have this hold.
equally at least νm inputs have αi 6= 0

Hence, ν can be seen as the fraction of ‘support vectors’, a
natural measure of the noise in the data.

Shawe-Taylor Frontiers of ML

Dual form of the SVM problem

Have introduced a slightly non-standard version of the SVM
but makes ν-SVM very simple to define.

Consider expressing C = 1/(νm):

implies 0 ≤ αi ≤ 1/(νm)
if ξ > 0 then αi = 1/(νm), but

∑m

i=1 αi = 1 so at most νm
inputs can have this hold.
equally at least νm inputs have αi 6= 0

Hence, ν can be seen as the fraction of ‘support vectors’, a
natural measure of the noise in the data.

Shawe-Taylor Frontiers of ML

Alternative form of the SVM problem

Note more traditional form of the dual SVM optimisation:

L(α) =
m
∑

i=1

αi −
1

2

m
∑

i ,j=1

αiαjyiyjκ (xi , xj) .

with constraints

0 ≤ αi ≤ C ,
m
∑

i=1

yiαi = 0

Shawe-Taylor Frontiers of ML

Alternative form of the SVM problem

Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

The values of the regularisation parameter C do not
correspond.

Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
∑m

i=1 αiyi = 0, so can perform gradient descent on individual
αi independently.

SMO algorithm performs the update on pairs of αi , αj to
ensure constraints remain satisfied.

Shawe-Taylor Frontiers of ML

Alternative form of the SVM problem

Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

The values of the regularisation parameter C do not
correspond.

Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
∑m

i=1 αiyi = 0, so can perform gradient descent on individual
αi independently.

SMO algorithm performs the update on pairs of αi , αj to
ensure constraints remain satisfied.

Shawe-Taylor Frontiers of ML

Alternative form of the SVM problem

Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

The values of the regularisation parameter C do not
correspond.

Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
∑m

i=1 αiyi = 0, so can perform gradient descent on individual
αi independently.

SMO algorithm performs the update on pairs of αi , αj to
ensure constraints remain satisfied.

Shawe-Taylor Frontiers of ML

Alternative form of the SVM problem

Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

The values of the regularisation parameter C do not
correspond.

Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
∑m

i=1 αiyi = 0, so can perform gradient descent on individual
αi independently.

SMO algorithm performs the update on pairs of αi , αj to
ensure constraints remain satisfied.

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 342

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Shawe-Taylor Frontiers of ML

Error distribution: dataset size: 273

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Shawe-Taylor Frontiers of ML

Linear programming machine

Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.

Some questions about why it works so well

Seeks linear function in a feature space defined explicitly and
can use the 1-norm to keep most coefficients zero.

Shawe-Taylor Frontiers of ML

Linear programming machine

Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.

Some questions about why it works so well

Seeks linear function in a feature space defined explicitly and
can use the 1-norm to keep most coefficients zero.

Shawe-Taylor Frontiers of ML

Linear programming machine

Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.

Some questions about why it works so well

Seeks linear function in a feature space defined explicitly and
can use the 1-norm to keep most coefficients zero.

Shawe-Taylor Frontiers of ML

Linear programming boosting

Very slight generalisation considers the features as a set Hij of
‘weak’ learners (and includes the constant function as one
weak learner and negative of each weak learner):

mina,ξ ‖a‖1 + C
∑m

i=1 ξi

subject to yiHia ≥ 1− ξi , ξi ≥ 0, ai ≥ 0
i = 1, . . . ,m.

where a is the vector of coefficients.

Shawe-Taylor Frontiers of ML

Final Boosting bound

Applying a similar strategy for Boosting with the 1-norm of
the slack variables we arrive at Linear programming boosting
that minimises

∑

h

ah + C
m
∑

i=1

ξi ,

where ξi = (1− yi
∑

h ahh(xi))+ and ah ≥ 0.

with corresponding bound:

P(y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1

m

m
∑

i=1

ξi + R̂(H)
∑

h

ah + 3

√

ln(2/δ)

2m

where moving to a linear combination of the weak learners H
has only cost factor of the 1-norm of the coefficients (ah)h∈H .

Shawe-Taylor Frontiers of ML

Final Boosting bound

Applying a similar strategy for Boosting with the 1-norm of
the slack variables we arrive at Linear programming boosting
that minimises

∑

h

ah + C
m
∑

i=1

ξi ,

where ξi = (1− yi
∑

h ahh(xi))+ and ah ≥ 0.

with corresponding bound:

P(y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1

m

m
∑

i=1

ξi + R̂(H)
∑

h

ah + 3

√

ln(2/δ)

2m

where moving to a linear combination of the weak learners H
has only cost factor of the 1-norm of the coefficients (ah)h∈H .

Shawe-Taylor Frontiers of ML

Alternative version

Can explicitly optimise margin with 1-norm fixed:

maxρ,a,ξ ρ− D
∑m

i=1 ξi

subject to yiHia ≥ ρ− ξi , ξi ≥ 0,aj ≥ 0
∑N

j=1 aj = 1.

Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . ,N,
∑m

i=1 ui = 1, 0 ≤ ui ≤ D.

Shawe-Taylor Frontiers of ML

Alternative version

Can explicitly optimise margin with 1-norm fixed:

maxρ,a,ξ ρ− D
∑m

i=1 ξi

subject to yiHia ≥ ρ− ξi , ξi ≥ 0,aj ≥ 0
∑N

j=1 aj = 1.

Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . ,N,
∑m

i=1 ui = 1, 0 ≤ ui ≤ D.

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j⋆ that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j⋆) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j⋆}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples

Each j added acts like an additional weak learner

f (j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML

Multiple kernel learning

MKL puts a 1-norm constraint on a linear combination of
kernels:

{

κ(x, z) =

N
∑

t=1

ztκt(x, z) : zt ≥ 0,

N
∑

t=1

zt = 1

}

and trains an SVM while optimizing zt – a convex problem,

equivalent to performing Linear Programming boosting over
the (infinite) set of functions

F =

N
⋃

t=1

Ft

where Ft = {x→ 〈w, φt (x)〉 : ‖w‖ ≤ 1}.

Shawe-Taylor Frontiers of ML

Multiple kernel learning

MKL puts a 1-norm constraint on a linear combination of
kernels:

{

κ(x, z) =

N
∑

t=1

ztκt(x, z) : zt ≥ 0,

N
∑

t=1

zt = 1

}

and trains an SVM while optimizing zt – a convex problem,

equivalent to performing Linear Programming boosting over
the (infinite) set of functions

F =

N
⋃

t=1

Ft

where Ft = {x→ 〈w, φt (x)〉 : ‖w‖ ≤ 1}.

Shawe-Taylor Frontiers of ML

Multiple kernel learning

The corresponding Rademacher bound gives

P(y 6= sgn(g(x)))

≤ 1

mγ

m
∑

i=1

ξi +
1

γ
R̂m

(

N
⋃

t=1

Ft

)

+ 3

√

ln(2/δ)

2m

provided we can bound

R̂m

(

F =
N
⋃

t=1

Ft

)

Shawe-Taylor Frontiers of ML

Multiple kernel learning

The corresponding Rademacher bound gives

P(y 6= sgn(g(x)))

≤ 1

mγ

m
∑

i=1

ξi +
1

γ
R̂m

(

N
⋃

t=1

Ft

)

+ 3

√

ln(2/δ)

2m

provided we can bound

R̂m

(

F =
N
⋃

t=1

Ft

)

Shawe-Taylor Frontiers of ML

Bounding MKL

First further applications of McDiarmid gives with probability
1− δ0 of a random selection of σ∗:

R̂m(F) ≤
2

m
sup
f ∈F

m
∑

i=1

σ∗i f (xi) + 4

√

ln(1/δt)

2m

and
2

m
sup
f ∈Ft

m
∑

i=1

σ∗i f (xi) ≤ R̂m(Ft) + 4

√

ln(1/δt)

2m

with probability 1− δt

Shawe-Taylor Frontiers of ML

Bounding MKL

Hence taking δt = δ/2(N + 1) for t = 0, . . . ,N

R̂m

(

F =

N
⋃

t=1

Ft

)

≤ 2

m
sup
f ∈F

m
∑

i=1

σ∗i f (xi) + 4

√

ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
sup
f ∈Ft

m
∑

i=1

σ∗i f (xi) + 4

√

ln(2(N + 1)/δ)

2m

≤ 2

m
max

1≤t≤N
R̂m(Ft) + 8

√

ln(2(N + 1)/δ)

2m

with probability 1− δ/2.

Shawe-Taylor Frontiers of ML

Bounding MKL

This gives an overall bound on the generalisation of MKL of

P(y 6= sgn(g(x))) ≤ 1

mγ

m
∑

i=1

ξi +
2

γm
max

1≤t≤N
tr(Kt) +

8

γ

√

ln(2(N + 1)/δ)

2m
+ 3

√

ln(4/δ)

2m

where Kt is the t-th kernel matrix.

Bound gives only a logarithmic dependence on the number of
kernels.

Shawe-Taylor Frontiers of ML

Bounding MKL

This gives an overall bound on the generalisation of MKL of

P(y 6= sgn(g(x))) ≤ 1

mγ

m
∑

i=1

ξi +
2

γm
max

1≤t≤N
tr(Kt) +

8

γ

√

ln(2(N + 1)/δ)

2m
+ 3

√

ln(4/δ)

2m

where Kt is the t-th kernel matrix.

Bound gives only a logarithmic dependence on the number of
kernels.

Shawe-Taylor Frontiers of ML

Experimental results with large-scale MKL

Vedaldi et al. have applied to the PASCAL Visual Objects
Challenge (VOC 2007) data and

improvements over the winners of the challenge in 17 out of
the 20 categories
in more than half of the categories the increase in average
precision was over 25%
have also scaled effectively to millions of kernels

⋆ A. Vedaldi, V. Gulshan, M. Varma and A. Zisserman. Multiple kernels for

object detection. In Proceedings CVPR, Kyoto, Japan, September 2009.

Shawe-Taylor Frontiers of ML

Linear Programming MKL

Column generation gives efficient MKL if we can pick the best
weak learner in each Ft efficiently:

sup
f ∈Ft

m
∑

i=1

uiyi f (xi) = sup
w:‖w‖≤1

m
∑

i=1

uiyi 〈w, φt(xi)〉

= sup
w:‖w‖≤1

〈

w,

m
∑

i=1

uiyiφt(xi)

〉

=

∥

∥

∥

∥

∥

m
∑

i=1

uiyiφt(xi)

∥

∥

∥

∥

∥

=
√

u′YKtYu =: Nt

easily computable from the kernel matrices (note that u is
sparse after first iteration and can also be chosen sparse at the
start).

Shawe-Taylor Frontiers of ML

Linear Programming MKL

The optimal weak learner from Ft is realised by the weight
vector that achieves the supremum

w =

∑m
i=1 uiyiφt(xi)

‖∑m
i=1 uiyiφt(xi)‖

which has dual representation:

αi =
1

Nt
uiyi

Hence, can use the linear programming boosting approach to
implement multiple kernel learning.

Shawe-Taylor Frontiers of ML

Linear Programming MKL

The optimal weak learner from Ft is realised by the weight
vector that achieves the supremum

w =

∑m
i=1 uiyiφt(xi)

‖∑m
i=1 uiyiφt(xi)‖

which has dual representation:

αi =
1

Nt
uiyi

Hence, can use the linear programming boosting approach to
implement multiple kernel learning.

Shawe-Taylor Frontiers of ML

Frontiers of Machine Learning

Deep learning has (re-)emerged as having important research
and commercial value

Deep belief networks and related approaches have led this
charge

Kernels are sometimes referred to as ‘shallow’

Now consider:

ways in which kernel approaches to learning has been made
‘deeper’
possible integration of kernel and deep methods

Shawe-Taylor Frontiers of ML

Frontiers of Machine Learning

Deep learning has (re-)emerged as having important research
and commercial value

Deep belief networks and related approaches have led this
charge

Kernels are sometimes referred to as ‘shallow’

Now consider:

ways in which kernel approaches to learning has been made
‘deeper’
possible integration of kernel and deep methods

Shawe-Taylor Frontiers of ML

Frontiers of Machine Learning

Deep learning has (re-)emerged as having important research
and commercial value

Deep belief networks and related approaches have led this
charge

Kernels are sometimes referred to as ‘shallow’

Now consider:

ways in which kernel approaches to learning has been made
‘deeper’
possible integration of kernel and deep methods

Shawe-Taylor Frontiers of ML

Frontiers of Machine Learning

Deep learning has (re-)emerged as having important research
and commercial value

Deep belief networks and related approaches have led this
charge

Kernels are sometimes referred to as ‘shallow’

Now consider:

ways in which kernel approaches to learning has been made
‘deeper’
possible integration of kernel and deep methods

Shawe-Taylor Frontiers of ML

Why Shallow Learning?

Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

However, they actually implement linear functions in the
kernel defined feature space:

x 7−→fixed φ(x) 7−→learned 〈w, φ(x)〉

so that the learning (of w) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are
spread across several layers typically with non-linear transfer
functions

Learning of the deeper layers is often unsupervised with the
final classifier trained with the earlier layers fixed
Hence, we are effectively pre-learning a representation – this
would be analogous to learning the kernel

Shawe-Taylor Frontiers of ML

Why Shallow Learning?

Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

However, they actually implement linear functions in the
kernel defined feature space:

x 7−→fixed φ(x) 7−→learned 〈w, φ(x)〉

so that the learning (of w) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are
spread across several layers typically with non-linear transfer
functions

Learning of the deeper layers is often unsupervised with the
final classifier trained with the earlier layers fixed
Hence, we are effectively pre-learning a representation – this
would be analogous to learning the kernel

Shawe-Taylor Frontiers of ML

Why Shallow Learning?

Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

However, they actually implement linear functions in the
kernel defined feature space:

x 7−→fixed φ(x) 7−→learned 〈w, φ(x)〉

so that the learning (of w) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are
spread across several layers typically with non-linear transfer
functions

Learning of the deeper layers is often unsupervised with the
final classifier trained with the earlier layers fixed
Hence, we are effectively pre-learning a representation – this
would be analogous to learning the kernel

Shawe-Taylor Frontiers of ML

What happens in practice?

In practice we typically do perform some learning of the
kernel:

fix some hyper-parameters via some heuristic (e.g. width σ of
a Gaussian kernel)
use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)

In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:

standard generalisation bounds no longer apply if we choose
the feature space based on the training data
even test set bounds will be invalidated if we include the
testing data in the representation learning phase

Often more sophisticated representations encode ‘deep’ prior
knowledge, but are ‘learned’ by trial and error

for example the histograms of patch cluster presence used in
an object detection system

Shawe-Taylor Frontiers of ML

What happens in practice?

In practice we typically do perform some learning of the
kernel:

fix some hyper-parameters via some heuristic (e.g. width σ of
a Gaussian kernel)
use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)

In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:

standard generalisation bounds no longer apply if we choose
the feature space based on the training data
even test set bounds will be invalidated if we include the
testing data in the representation learning phase

Often more sophisticated representations encode ‘deep’ prior
knowledge, but are ‘learned’ by trial and error

for example the histograms of patch cluster presence used in
an object detection system

Shawe-Taylor Frontiers of ML

What happens in practice?

In practice we typically do perform some learning of the
kernel:

fix some hyper-parameters via some heuristic (e.g. width σ of
a Gaussian kernel)
use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)

In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:

standard generalisation bounds no longer apply if we choose
the feature space based on the training data
even test set bounds will be invalidated if we include the
testing data in the representation learning phase

Often more sophisticated representations encode ‘deep’ prior
knowledge, but are ‘learned’ by trial and error

for example the histograms of patch cluster presence used in
an object detection system

Shawe-Taylor Frontiers of ML

Kernel defined features spaces

Kernels define a feature space implicitly via a function κ(·, ·)
that computes an inner product:

symmetric:

κ(x, z) = 〈φ(x), φ(z)〉 = 〈φ(z), φ(x)〉 = κ(z, x)

kernel matrices are positive semi-definite:

u′Ku =

m
∑

i ,j=1

uiuj〈φ(xi), φ(xj)〉

=

〈

m
∑

i=1

uiφ(xi),
m
∑

j=1

ujφ(xj)

〉

=

∥

∥

∥

∥

∥

m
∑

i=1

uiφ(xi)

∥

∥

∥

∥

∥

2

≥ 0

Shawe-Taylor Frontiers of ML

Kernel functions

These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.

Implies that we can define kernels on virtually any objects
provided these properties are satisfied, eg documents, graphs,
networks, etc.

Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors – typically requires regularisation of the 2-norm

Examples: ridge regression, PCA, CCA, SVMs, etc.

Shawe-Taylor Frontiers of ML

Kernel functions

These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.

Implies that we can define kernels on virtually any objects
provided these properties are satisfied, eg documents, graphs,
networks, etc.

Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors – typically requires regularisation of the 2-norm

Examples: ridge regression, PCA, CCA, SVMs, etc.

Shawe-Taylor Frontiers of ML

Kernel functions

These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.

Implies that we can define kernels on virtually any objects
provided these properties are satisfied, eg documents, graphs,
networks, etc.

Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors – typically requires regularisation of the 2-norm

Examples: ridge regression, PCA, CCA, SVMs, etc.

Shawe-Taylor Frontiers of ML

Kernel functions

These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.

Implies that we can define kernels on virtually any objects
provided these properties are satisfied, eg documents, graphs,
networks, etc.

Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors – typically requires regularisation of the 2-norm

Examples: ridge regression, PCA, CCA, SVMs, etc.

Shawe-Taylor Frontiers of ML

Generating the feature space

Proof outline:

Define feature space as class of functions:

F =

{

m
∑

i=1

αiκ(xi , ·) : m ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . ,m

}

Linear space with inner product defined by
〈κ(x, ·), κ(z, ·)〉 = κ(x, z)

embedding given by
x 7−→ κ(x, ·)

Note reproducing property: for a function f ∈ F

f (x) = 〈f , κ(x, ·)〉

so called Reproducing Kernel Hilbert Space (RKHS)

Shawe-Taylor Frontiers of ML

Generating the feature space

Proof outline:

Define feature space as class of functions:

F =

{

m
∑

i=1

αiκ(xi , ·) : m ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . ,m

}

Linear space with inner product defined by
〈κ(x, ·), κ(z, ·)〉 = κ(x, z)

embedding given by
x 7−→ κ(x, ·)

Note reproducing property: for a function f ∈ F

f (x) = 〈f , κ(x, ·)〉

so called Reproducing Kernel Hilbert Space (RKHS)

Shawe-Taylor Frontiers of ML

Generating the feature space

Proof outline:

Define feature space as class of functions:

F =

{

m
∑

i=1

αiκ(xi , ·) : m ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . ,m

}

Linear space with inner product defined by
〈κ(x, ·), κ(z, ·)〉 = κ(x, z)

embedding given by
x 7−→ κ(x, ·)

Note reproducing property: for a function f ∈ F

f (x) = 〈f , κ(x, ·)〉

so called Reproducing Kernel Hilbert Space (RKHS)

Shawe-Taylor Frontiers of ML

Generating the feature space

Proof outline:

Define feature space as class of functions:

F =

{

m
∑

i=1

αiκ(xi , ·) : m ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . ,m

}

Linear space with inner product defined by
〈κ(x, ·), κ(z, ·)〉 = κ(x, z)

embedding given by
x 7−→ κ(x, ·)

Note reproducing property: for a function f ∈ F

f (x) = 〈f , κ(x, ·)〉

so called Reproducing Kernel Hilbert Space (RKHS)

Shawe-Taylor Frontiers of ML

Mean Embeddings

If there is a distribution D on the input space it defines a
point µD in the feature space:

µD = Ex∼D[φ(x)]

and its empirical counterpart for a finite sample S :

µ̂S = Ex∼S [φ(x)] = Ê[φ(x)]

Surprisingly, despite their being no restriction on the
dimensionality of F , if D has support in the R ball, with
probability at least 1− δ over an iid sample S

‖µD − µ̂S‖ ≤
R√
m

(

2 +

√

2 ln
1

δ

)

Shawe-Taylor Frontiers of ML

Mean Embeddings

If there is a distribution D on the input space it defines a
point µD in the feature space:

µD = Ex∼D[φ(x)]

and its empirical counterpart for a finite sample S :

µ̂S = Ex∼S [φ(x)] = Ê[φ(x)]

Surprisingly, despite their being no restriction on the
dimensionality of F , if D has support in the R ball, with
probability at least 1− δ over an iid sample S

‖µD − µ̂S‖ ≤
R√
m

(

2 +

√

2 ln
1

δ

)

Shawe-Taylor Frontiers of ML

Mean Embeddings

If there is a distribution D on the input space it defines a
point µD in the feature space:

µD = Ex∼D[φ(x)]

and its empirical counterpart for a finite sample S :

µ̂S = Ex∼S [φ(x)] = Ê[φ(x)]

Surprisingly, despite their being no restriction on the
dimensionality of F , if D has support in the R ball, with
probability at least 1− δ over an iid sample S

‖µD − µ̂S‖ ≤
R√
m

(

2 +

√

2 ln
1

δ

)

Shawe-Taylor Frontiers of ML

Mean Embeddings for Expectations

Since F is a space of functions, using the reproducing
property we can also estimate expectations for f ∈ F

Ex∼D[f (x)] = Ex∼D[〈f , φ(x)〉] = 〈f ,Ex∼D[φ(x)]〉 = 〈f , µD〉

similarly for its empirical counterpart and furthermore we can
bound the error of the empirical estimate:

|Ex∼D[f (x)] − Ê[f (x)]| = |〈f , µD〉 − 〈f , µ̂S〉|
= |〈f , µD − µ̂S〉

≤ ‖f ‖R√
m

(

2 +

√

2 ln
1

δ

)

Shawe-Taylor Frontiers of ML

Mean Embeddings for Expectations

Since F is a space of functions, using the reproducing
property we can also estimate expectations for f ∈ F

Ex∼D[f (x)] = Ex∼D[〈f , φ(x)〉] = 〈f ,Ex∼D[φ(x)]〉 = 〈f , µD〉

similarly for its empirical counterpart and furthermore we can
bound the error of the empirical estimate:

|Ex∼D[f (x)] − Ê[f (x)]| = |〈f , µD〉 − 〈f , µ̂S〉|
= |〈f , µD − µ̂S〉

≤ ‖f ‖R√
m

(

2 +

√

2 ln
1

δ

)

Shawe-Taylor Frontiers of ML

Conditional Mean Embeddings

It is natural to ask if we can generalise these ideas to
conditional distributions P(X |Y)

Now the distribution and hence mean embedding is a function
of Y

µP(X |Y) = µ(Y) ∈ F
Hence µ : Y −→ F can be viewed as a regressor, albeit into a
Hilbert space.

Shawe-Taylor Frontiers of ML

Conditional Mean Embeddings

It is natural to ask if we can generalise these ideas to
conditional distributions P(X |Y)

Now the distribution and hence mean embedding is a function
of Y

µP(X |Y) = µ(Y) ∈ F
Hence µ : Y −→ F can be viewed as a regressor, albeit into a
Hilbert space.

Shawe-Taylor Frontiers of ML

Conditional Mean Embeddings

It is natural to ask if we can generalise these ideas to
conditional distributions P(X |Y)

Now the distribution and hence mean embedding is a function
of Y

µP(X |Y) = µ(Y) ∈ F
Hence µ : Y −→ F can be viewed as a regressor, albeit into a
Hilbert space.

Shawe-Taylor Frontiers of ML

Reinforcement Learning (RL)

Reinforcement Learning models agents that learn through
acting in an environment and receiving reward

AKA Markov Decision Processes:

set of states S
set of actions A
Markov transition kernel P(s ′|s, a)
reward function r : S ×A → [0, 1])
and discount 0 < γ < 1

Agent has to select a policy π : S → P(A)

Shawe-Taylor Frontiers of ML

Reinforcement Learning (RL)

Reinforcement Learning models agents that learn through
acting in an environment and receiving reward

AKA Markov Decision Processes:

set of states S
set of actions A
Markov transition kernel P(s ′|s, a)
reward function r : S ×A → [0, 1])
and discount 0 < γ < 1

Agent has to select a policy π : S → P(A)

Shawe-Taylor Frontiers of ML

Reinforcement Learning (RL)

Reinforcement Learning models agents that learn through
acting in an environment and receiving reward

AKA Markov Decision Processes:

set of states S
set of actions A
Markov transition kernel P(s ′|s, a)
reward function r : S ×A → [0, 1])
and discount 0 < γ < 1

Agent has to select a policy π : S → P(A)

Shawe-Taylor Frontiers of ML

Experience in RL

Agent experience: ξ = (S1,A1,S2,A2, . . .)

S1 ∼ P1, At ∼ π(St), St+1 ∼ P(·|St ,At)

Expected return:

J(π) = E

[

∞
∑

t=1

γt−1r(St ,At)|π
]

Value function:

V π(s) = E

[

∞
∑

t=1

γt−1r(St ,At)|S1 = s, π

]

Action Value function:

Qπ(s, a) = r(s, a) + γES ′∼P(·|s,a)

[

V π(S ′)
]

Shawe-Taylor Frontiers of ML

Experience in RL

Agent experience: ξ = (S1,A1,S2,A2, . . .)

S1 ∼ P1, At ∼ π(St), St+1 ∼ P(·|St ,At)

Expected return:

J(π) = E

[

∞
∑

t=1

γt−1r(St ,At)|π
]

Value function:

V π(s) = E

[

∞
∑

t=1

γt−1r(St ,At)|S1 = s, π

]

Action Value function:

Qπ(s, a) = r(s, a) + γES ′∼P(·|s,a)

[

V π(S ′)
]

Shawe-Taylor Frontiers of ML

Experience in RL

Agent experience: ξ = (S1,A1,S2,A2, . . .)

S1 ∼ P1, At ∼ π(St), St+1 ∼ P(·|St ,At)

Expected return:

J(π) = E

[

∞
∑

t=1

γt−1r(St ,At)|π
]

Value function:

V π(s) = E

[

∞
∑

t=1

γt−1r(St ,At)|S1 = s, π

]

Action Value function:

Qπ(s, a) = r(s, a) + γES ′∼P(·|s,a)

[

V π(S ′)
]

Shawe-Taylor Frontiers of ML

Experience in RL

Agent experience: ξ = (S1,A1,S2,A2, . . .)

S1 ∼ P1, At ∼ π(St), St+1 ∼ P(·|St ,At)

Expected return:

J(π) = E

[

∞
∑

t=1

γt−1r(St ,At)|π
]

Value function:

V π(s) = E

[

∞
∑

t=1

γt−1r(St ,At)|S1 = s, π

]

Action Value function:

Qπ(s, a) = r(s, a) + γES ′∼P(·|s,a)

[

V π(S ′)
]

Shawe-Taylor Frontiers of ML

Experience in RL

Agent experience: ξ = (S1,A1,S2,A2, . . .)

S1 ∼ P1, At ∼ π(St), St+1 ∼ P(·|St ,At)

Expected return:

J(π) = E

[

∞
∑

t=1

γt−1r(St ,At)|π
]

Value function:

V π(s) = E

[

∞
∑

t=1

γt−1r(St ,At)|S1 = s, π

]

Action Value function:

Qπ(s, a) = r(s, a) + γES ′∼P(·|s,a)

[

V π(S ′)
]

Shawe-Taylor Frontiers of ML

Bellman Equation

V π satisfies the Bellman equation

V π(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V
π(S ′)]

]

T π is the Bellman operator mapping V to T πV

(T πV)(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V (S ′)]
]

The optimal policy satisfies: V ⋆(s) = supπ∈Π V π(s)

The optimal policy can be computed by value iteration, policy
iteration or dynamic programming

Shawe-Taylor Frontiers of ML

Bellman Equation

V π satisfies the Bellman equation

V π(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V
π(S ′)]

]

T π is the Bellman operator mapping V to T πV

(T πV)(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V (S ′)]
]

The optimal policy satisfies: V ⋆(s) = supπ∈Π V π(s)

The optimal policy can be computed by value iteration, policy
iteration or dynamic programming

Shawe-Taylor Frontiers of ML

Bellman Equation

V π satisfies the Bellman equation

V π(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V
π(S ′)]

]

T π is the Bellman operator mapping V to T πV

(T πV)(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V (S ′)]
]

The optimal policy satisfies: V ⋆(s) = supπ∈Π V π(s)

The optimal policy can be computed by value iteration, policy
iteration or dynamic programming

Shawe-Taylor Frontiers of ML

Bellman Equation

V π satisfies the Bellman equation

V π(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V
π(S ′)]

]

T π is the Bellman operator mapping V to T πV

(T πV)(s) = EA∼π(s)

[

r(s,A) + γES ′∼P(·|s,A)[V (S ′)]
]

The optimal policy satisfies: V ⋆(s) = supπ∈Π V π(s)

The optimal policy can be computed by value iteration, policy
iteration or dynamic programming

Shawe-Taylor Frontiers of ML

Linear representations of the Value function

Can assume a linear form for V π:

V π(s) = 〈wπ, φ(s)〉

then solving the Bellman equation means finding wπ such that

〈wπ, φ(s)〉 = r(s, π(s)) + γES ′∼P(·|s,π(s))

[

〈wπ, φ(S
′)〉
]

Building a model of the dynamics makes it possible to solve
this

Using CMEs gives a clean way of computing the expectations

Shawe-Taylor Frontiers of ML

Linear representations of the Value function

Can assume a linear form for V π:

V π(s) = 〈wπ, φ(s)〉

then solving the Bellman equation means finding wπ such that

〈wπ, φ(s)〉 = r(s, π(s)) + γES ′∼P(·|s,π(s))

[

〈wπ, φ(S
′)〉
]

Building a model of the dynamics makes it possible to solve
this

Using CMEs gives a clean way of computing the expectations

Shawe-Taylor Frontiers of ML

Linear representations of the Value function

Can assume a linear form for V π:

V π(s) = 〈wπ, φ(s)〉

then solving the Bellman equation means finding wπ such that

〈wπ, φ(s)〉 = r(s, π(s)) + γES ′∼P(·|s,π(s))

[

〈wπ, φ(S
′)〉
]

Building a model of the dynamics makes it possible to solve
this

Using CMEs gives a clean way of computing the expectations

Shawe-Taylor Frontiers of ML

Linear representations of the Value function

Can assume a linear form for V π:

V π(s) = 〈wπ, φ(s)〉

then solving the Bellman equation means finding wπ such that

〈wπ, φ(s)〉 = r(s, π(s)) + γES ′∼P(·|s,π(s))

[

〈wπ, φ(S
′)〉
]

Building a model of the dynamics makes it possible to solve
this

Using CMEs gives a clean way of computing the expectations

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Recall if V (s) = 〈v , φ(s)〉 then

ES ′∼P(·|s,a)

[

V (S ′)
]

=
〈

v ,ES ′∼P(·|s,a)

[

φ(S ′)
]〉

Hence we need µ : S × A → F

µ(s, a) = ES ′∼P(·|s,a)

[

φ(S ′)
]

We learn regressor µ̂ using training loss

ˆloss(µ̂) =
1

m

m
∑

i=1

‖µ̂(si , ai)− φ(s ′i)‖2

where training data is {(si , ai , s ′i) : i = 1, . . . ,m}

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Recall if V (s) = 〈v , φ(s)〉 then

ES ′∼P(·|s,a)

[

V (S ′)
]

=
〈

v ,ES ′∼P(·|s,a)

[

φ(S ′)
]〉

Hence we need µ : S × A → F

µ(s, a) = ES ′∼P(·|s,a)

[

φ(S ′)
]

We learn regressor µ̂ using training loss

ˆloss(µ̂) =
1

m

m
∑

i=1

‖µ̂(si , ai)− φ(s ′i)‖2

where training data is {(si , ai , s ′i) : i = 1, . . . ,m}

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Recall if V (s) = 〈v , φ(s)〉 then

ES ′∼P(·|s,a)

[

V (S ′)
]

=
〈

v ,ES ′∼P(·|s,a)

[

φ(S ′)
]〉

Hence we need µ : S × A → F

µ(s, a) = ES ′∼P(·|s,a)

[

φ(S ′)
]

We learn regressor µ̂ using training loss

ˆloss(µ̂) =
1

m

m
∑

i=1

‖µ̂(si , ai)− φ(s ′i)‖2

where training data is {(si , ai , s ′i) : i = 1, . . . ,m}

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Solution has the form µ̂(s, a) =
∑m

i=1 αi (s, a)φ(s
′
i)

Hence

Eµ̂

[

V (S ′)
]

= 〈µ̂(s, a), v〉 =
m
∑

i=1

αi (s, a)V (s ′i) = α(s, a)T v

So Bellman equation becomes a linear system on the vector v

v = r+ γAv

where r = EA∼π(si)r(si ,A) and Aij = EA∼π(si)[αj (si ,A)]

so reduced to finite MDP

Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Solution has the form µ̂(s, a) =
∑m

i=1 αi (s, a)φ(s
′
i)

Hence

Eµ̂

[

V (S ′)
]

= 〈µ̂(s, a), v〉 =
m
∑

i=1

αi (s, a)V (s ′i) = α(s, a)T v

So Bellman equation becomes a linear system on the vector v

v = r+ γAv

where r = EA∼π(si)r(si ,A) and Aij = EA∼π(si)[αj (si ,A)]

so reduced to finite MDP

Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Solution has the form µ̂(s, a) =
∑m

i=1 αi (s, a)φ(s
′
i)

Hence

Eµ̂

[

V (S ′)
]

= 〈µ̂(s, a), v〉 =
m
∑

i=1

αi (s, a)V (s ′i) = α(s, a)T v

So Bellman equation becomes a linear system on the vector v

v = r+ γAv

where r = EA∼π(si)r(si ,A) and Aij = EA∼π(si)[αj (si ,A)]

so reduced to finite MDP

Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Solution has the form µ̂(s, a) =
∑m

i=1 αi (s, a)φ(s
′
i)

Hence

Eµ̂

[

V (S ′)
]

= 〈µ̂(s, a), v〉 =
m
∑

i=1

αi (s, a)V (s ′i) = α(s, a)T v

So Bellman equation becomes a linear system on the vector v

v = r+ γAv

where r = EA∼π(si)r(si ,A) and Aij = EA∼π(si)[αj (si ,A)]

so reduced to finite MDP

Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states

Shawe-Taylor Frontiers of ML

CMEs 4 RL

Solution has the form µ̂(s, a) =
∑m

i=1 αi (s, a)φ(s
′
i)

Hence

Eµ̂

[

V (S ′)
]

= 〈µ̂(s, a), v〉 =
m
∑

i=1

αi (s, a)V (s ′i) = α(s, a)T v

So Bellman equation becomes a linear system on the vector v

v = r+ γAv

where r = EA∼π(si)r(si ,A) and Aij = EA∼π(si)[αj (si ,A)]

so reduced to finite MDP

Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states

Shawe-Taylor Frontiers of ML

Greedy compression set

augmentCompressionSet(C, δ,P)
Input: Initial compression set C = c1, ..., cm, candidates
P = s ′1, ..., s

′
n, tolerance δ

for j = 1, 2, ..., n do

if min
b∈Rm ,||b||1≤1||

∑m
i=1 biφ(ci)−φ(s ′j)||F >δ then

Augment compression set: C ← C ∪ s ′j , m← m + 1
end if

end for

For learning the α coefficients:

αj(s, a) =

m
∑

i=1

K ((s, a), (si , ai))Wij

we have a regression problem – again with high complexity –
turn to matching pursuit

Shawe-Taylor Frontiers of ML

Greedy compression set

augmentCompressionSet(C, δ,P)
Input: Initial compression set C = c1, ..., cm, candidates
P = s ′1, ..., s

′
n, tolerance δ

for j = 1, 2, ..., n do

if min
b∈Rm ,||b||1≤1||

∑m
i=1 biφ(ci)−φ(s ′j)||F >δ then

Augment compression set: C ← C ∪ s ′j , m← m + 1
end if

end for

For learning the α coefficients:

αj(s, a) =

m
∑

i=1

K ((s, a), (si , ai))Wij

we have a regression problem – again with high complexity –
turn to matching pursuit

Shawe-Taylor Frontiers of ML

Matching pursuit

Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace

Allows different criteria for selection to be implemented in one
framework, eg sparse PCA, classification, regression, canonical
correlation analysis, etc. and all come with bounds

⋆ Hussain, Z., Shawe-Taylor, J., Hardoon, D.R. and Dhanjal, C (2011)

Design and Generalization Analysis of Orthogonal Matching Pursuit

Algorithms, IEEE Trans on Information Theory, 57, 5326–5341.

Shawe-Taylor Frontiers of ML

Matching pursuit

Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace

Allows different criteria for selection to be implemented in one
framework, eg sparse PCA, classification, regression, canonical
correlation analysis, etc. and all come with bounds

⋆ Hussain, Z., Shawe-Taylor, J., Hardoon, D.R. and Dhanjal, C (2011)

Design and Generalization Analysis of Orthogonal Matching Pursuit

Algorithms, IEEE Trans on Information Theory, 57, 5326–5341.

Shawe-Taylor Frontiers of ML

Matching pursuit

Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace

Allows different criteria for selection to be implemented in one
framework, eg sparse PCA, classification, regression, canonical
correlation analysis, etc. and all come with bounds

⋆ Hussain, Z., Shawe-Taylor, J., Hardoon, D.R. and Dhanjal, C (2011)

Design and Generalization Analysis of Orthogonal Matching Pursuit

Algorithms, IEEE Trans on Information Theory, 57, 5326–5341.

Shawe-Taylor Frontiers of ML

Matching pursuit for KCCA

Require: two views Kx , Ky and sparsity parameter k > 0.
1: initialise index vector i = [] and an all one vector 1 .
2: for i = 1 to k do

3: set ii to index of maxi
Kx [:,i]′Ky [:,i]√
K2

x [i ,i]K
2
y [i ,i]

4: set τx = Kx [:, ii] and τy = Ky [:, ii] to deflate kernel
matrices:

Kx = Kx −
τx (τ

′
xKx)

τ
′
xτx

Ky = Ky −
τy

(

τ
′
yKy

)

τ
′
yτy

5: end for

6: solve KCCA on points indexed by final i to find α̃x and α̃y the
duals of the projection vectors.

Shawe-Taylor Frontiers of ML

Matching pursuit bound plot

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Level of sparsity

Lo
ss

SKCCA error on English�Spanish text data set

bound

SKCCA test error

Figure: Bound plot for sparse KCCA using 1-dimension.
Shawe-Taylor Frontiers of ML

Policy iteration with Compressed kernel CMEs

for k = 1, 2, ... do
Ck = augmentCompressionSet(Ck−1, {s ′i }nki=nk−1+1, δ).

Gk = Bk−1 ∪ {K (·, (si , ai))}nki=nk−1+1

Sparse basis selection: Learn sparse basis
Bk = {K (·, (ŝℓ, âℓ))}dkℓ=1, dk ≤ d from candidates Gk using
matching pursuit; Set ψk

ℓ (·) = K ((ŝℓ, âℓ), ·),
Ψk =

(

ψk(s1, a1), ..., ψ
k (snk , ank)

)⊤
.

WCMP
k = (Ψ⊤

k Ψk + λK)−1Ψ⊤
k L

DC (LCC)−1.
for ℓ = 1, 2, ..., J do

Policy evaluation: Using finite pseudo-MDP dynamics
αPCMP(cj , a) for a ∈ A, cj ∈ C solve approximate Bellman

Equation to obtain estimate V̂ℓ of V
πk at the compression

points cj ∈ C. Set
Q̂ℓ(s, a) = r(s, a) + γ

∑|Ck |
j=1 α

PCMP
j (s, a)V̂ℓ(cj).

Policy improvement: πk ← greedy(Q̂ℓ).
end for

πk+1 ← πk . Shawe-Taylor Frontiers of ML

Experiments: Cart-pole benchmark

Simulated under-actuated cart-pole swing-up benchmark problem

S = R
2, s = (θ, θ̇), A = [−50, 50], horizontal force in newtons

Shawe-Taylor Frontiers of ML

Experiments: Quadrocopter Simulator

Simulator calibrated to model the dynamics of PelicanTM

quadrocopter platforms
S ⊂ R

13, s = (x , y , z , θ φ, ψ, ẋ , ẏ , ż , θ̇, φ̇, ψ̇,F)
A ⊂ R

3 represents desired velocity vectors, PID controller
translates into low level commands
Tasks:

Navigation: platform must navigate to point

Holding pattern: platform must stay in circle and maintain
minimum velocity

Shawe-Taylor Frontiers of ML

Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: navigation and holding pattern

RKHS controller better in high-dim. state-space

Attempts to obtain similar results with deep learning have
extended the flexibility and scaling of the method, albeit at
the expense of requiring more training iterations.

Shawe-Taylor Frontiers of ML

Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: navigation and holding pattern

RKHS controller better in high-dim. state-space

Attempts to obtain similar results with deep learning have
extended the flexibility and scaling of the method, albeit at
the expense of requiring more training iterations.

Shawe-Taylor Frontiers of ML

Deep Learning models

Deep learning models allow learning more complex models
through multiple layers of parameters

This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models

Understanding what underpins this good performance is the
subject of current theoretical studies

Shawe-Taylor Frontiers of ML

Deep Learning models

Deep learning models allow learning more complex models
through multiple layers of parameters

This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models

Understanding what underpins this good performance is the
subject of current theoretical studies

Shawe-Taylor Frontiers of ML

Deep Learning models

Deep learning models allow learning more complex models
through multiple layers of parameters

This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models

Understanding what underpins this good performance is the
subject of current theoretical studies

Shawe-Taylor Frontiers of ML

Deep Learning models

Deep learning models allow learning more complex models
through multiple layers of parameters

This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models

Understanding what underpins this good performance is the
subject of current theoretical studies

Shawe-Taylor Frontiers of ML

Motivation

Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

Simplest approach is average of gradients, but can include
longer averages

Conjugate gradient methods exploit second order information

Can more be extracted from mini-batch gradients exploiting
the fact that they represent an i.i.d. sample of the data
distribution?

Shawe-Taylor Frontiers of ML

Motivation

Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

Simplest approach is average of gradients, but can include
longer averages

Conjugate gradient methods exploit second order information

Can more be extracted from mini-batch gradients exploiting
the fact that they represent an i.i.d. sample of the data
distribution?

Shawe-Taylor Frontiers of ML

Motivation

Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

Simplest approach is average of gradients, but can include
longer averages

Conjugate gradient methods exploit second order information

Can more be extracted from mini-batch gradients exploiting
the fact that they represent an i.i.d. sample of the data
distribution?

Shawe-Taylor Frontiers of ML

Motivation

Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

Simplest approach is average of gradients, but can include
longer averages

Conjugate gradient methods exploit second order information

Can more be extracted from mini-batch gradients exploiting
the fact that they represent an i.i.d. sample of the data
distribution?

Shawe-Taylor Frontiers of ML

Key idea

View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

This is ignoring second order effects: i.e. for small weight
updates will hold

f j(w + δw, xi) ≈ f j(w, xi) + 〈δw,∇f j(w, xi)〉

Have a target reduction of ǫ

In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

this can be translated into an optimisation that needs to be
solved

Shawe-Taylor Frontiers of ML

Key idea

View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

This is ignoring second order effects: i.e. for small weight
updates will hold

f j(w + δw, xi) ≈ f j(w, xi) + 〈δw,∇f j(w, xi)〉

Have a target reduction of ǫ

In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

this can be translated into an optimisation that needs to be
solved

Shawe-Taylor Frontiers of ML

Key idea

View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

This is ignoring second order effects: i.e. for small weight
updates will hold

f j(w + δw, xi) ≈ f j(w, xi) + 〈δw,∇f j(w, xi)〉

Have a target reduction of ǫ

In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

this can be translated into an optimisation that needs to be
solved

Shawe-Taylor Frontiers of ML

Key idea

View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

This is ignoring second order effects: i.e. for small weight
updates will hold

f j(w + δw, xi) ≈ f j(w, xi) + 〈δw,∇f j(w, xi)〉

Have a target reduction of ǫ

In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

this can be translated into an optimisation that needs to be
solved

Shawe-Taylor Frontiers of ML

Key idea

View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

This is ignoring second order effects: i.e. for small weight
updates will hold

f j(w + δw, xi) ≈ f j(w, xi) + 〈δw,∇f j(w, xi)〉

Have a target reduction of ǫ

In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

this can be translated into an optimisation that needs to be
solved

Shawe-Taylor Frontiers of ML

Update optimisation to choose δw

1: Minimise 1
2‖δw‖2 + C

∑ℓ
i=1

∑K
j=1 ξij

2: Subject to: yij〈δw,∇f j(w, xi)〉 ≥ ǫ− ξij ξij ≥ 0,
i = 1, . . . , ℓ; j = 1, . . . ,K

this is an SVM optimisation (with target margin ǫ).

The dual optimisation is

1: Max ǫ
∑

ij αij − 1
2

∑

ijkl αijαklκ((xi , j), (xk , l))
2: Subject to: C ≥ αij ≥ 0

where κ((xi , j), (xk , l)) = 〈∇f j(w, xi),∇f l (w, xk)〉

Shawe-Taylor Frontiers of ML

Analysis

Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update

The following bound holds

ED[(ǫ− yj〈δw,∇f j(w, x)〉)+] ≤ A =
1

ℓǫ

∑

ij

ξij +

+
4‖δw‖
ǫℓ

√

tr(K) + 3

√

ln(2/δ)

2ℓ

Hence, ignoring second order effects, for an ηδw weight
update, the average hinge loss across the whole training (and
test) set will with high probability reduce by at least

η (ǫ− A)

Shawe-Taylor Frontiers of ML

Analysis

Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update

The following bound holds

ED[(ǫ− yj〈δw,∇f j(w, x)〉)+] ≤ A =
1

ℓǫ

∑

ij

ξij +

+
4‖δw‖
ǫℓ

√

tr(K) + 3

√

ln(2/δ)

2ℓ

Hence, ignoring second order effects, for an ηδw weight
update, the average hinge loss across the whole training (and
test) set will with high probability reduce by at least

η (ǫ− A)

Shawe-Taylor Frontiers of ML

Analysis

Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update

The following bound holds

ED[(ǫ− yj〈δw,∇f j(w, x)〉)+] ≤ A =
1

ℓǫ

∑

ij

ξij +

+
4‖δw‖
ǫℓ

√

tr(K) + 3

√

ln(2/δ)

2ℓ

Hence, ignoring second order effects, for an ηδw weight
update, the average hinge loss across the whole training (and
test) set will with high probability reduce by at least

η (ǫ− A)

Shawe-Taylor Frontiers of ML

Optimization

η = 0.1; r = 1.0; ℓ = initial batch size
for i ∈ [1, 2, · · · , num iter] do
Bs ← generateMinibatches(D, ℓ)
δw ← trainMinibatch(Bs , C, r)
bound term = ‖δw‖

√

tr(K)/ℓ
while bound term > threshold do

ℓ ← 2 * ℓ #minibatch size
r ← 0.1 ∗ r #SVM Regularizer
Bs ← generateMinibatches(D, ℓ)
δw ← trainMinibatch(Bs , C, r)
bound term = ‖δw‖

√

tr(K)/ℓ
end while

w ← w + η ∗ δw
end for

Shawe-Taylor Frontiers of ML

Datasets

MNIST: It consists of images of handwritten digits in binary.
It has a training set of 60,000 examples, and a test set of
10,000 examples.

CIFAR-10: It consists of 60000 32x32 colour images in 10
classes, with 6000 images per class.

Shawe-Taylor Frontiers of ML

Convergence

Figure: Left: MNIST & Right: CIFAR. We plot the hinge loss over train
set versus epochs.

Shawe-Taylor Frontiers of ML

Accuracy

Figure: Left: MNIST & Right: CIFAR. We plot the training accuracy
over the entire train set versus epochs.

Shawe-Taylor Frontiers of ML

Generalization

Figure: Left: We see that the ratio of decrease in loss over train set and
mini-batch decreases with increase in the bound, implying that the
updates become less generalized. Right: We observe that the validation
accuracy initially increases and then stabilizes for mnist using our
algorithm, as opposed to sgd.

Shawe-Taylor Frontiers of ML

Robustness: Adversarial Noise

MNIST CIFAR
Norm sgd-based svm-based sgd-based svm-based

frobenius 5.12 7.32 7.95 9.25

infinity 5.90 8.11 6.50 8.57

nuclear 7.29 8.11 8.50 9.12

1-norm 6.23 7.59 7.40 9.10

Table: We give details of the additive adversarial noise learned for left:
MNIST and right: CIFAR using traditional back-propagation and
svm-based updates. Additive adversarial noise is the minimum amount of
noise to be added to images such that the network misclassifies them.

Shawe-Taylor Frontiers of ML

Summary and Conclusions

Introduction to pattern analysis and machine learning through
the perspective of kernel methods

Emphasis on the need to assess and improve generalisation:
analysis provided through Radmacher Complexity

Attempts to use principled methods for complex tasks such as
Reinforcement Learning have met with considerable success

Deep learning follows similar principles of fitting data, but
appears to exhibit a remarkable resistance to overfitting when
trained using stochastic gradient descent and variants thereof.

Shawe-Taylor Frontiers of ML

Summary and Conclusions

Introduction to pattern analysis and machine learning through
the perspective of kernel methods

Emphasis on the need to assess and improve generalisation:
analysis provided through Radmacher Complexity

Attempts to use principled methods for complex tasks such as
Reinforcement Learning have met with considerable success

Deep learning follows similar principles of fitting data, but
appears to exhibit a remarkable resistance to overfitting when
trained using stochastic gradient descent and variants thereof.

Shawe-Taylor Frontiers of ML

Summary and Conclusions

Introduction to pattern analysis and machine learning through
the perspective of kernel methods

Emphasis on the need to assess and improve generalisation:
analysis provided through Radmacher Complexity

Attempts to use principled methods for complex tasks such as
Reinforcement Learning have met with considerable success

Deep learning follows similar principles of fitting data, but
appears to exhibit a remarkable resistance to overfitting when
trained using stochastic gradient descent and variants thereof.

Shawe-Taylor Frontiers of ML

Summary and Conclusions

Introduction to pattern analysis and machine learning through
the perspective of kernel methods

Emphasis on the need to assess and improve generalisation:
analysis provided through Radmacher Complexity

Attempts to use principled methods for complex tasks such as
Reinforcement Learning have met with considerable success

Deep learning follows similar principles of fitting data, but
appears to exhibit a remarkable resistance to overfitting when
trained using stochastic gradient descent and variants thereof.

Shawe-Taylor Frontiers of ML

